Evaluation of Association between Tumor Markers, Hormonal Receptors, Inflammatory Biomarkers and Breast Cancer Biomarkers in Breast Cancer

Mustafa H. Ghazi (1), Zainab Abd Mohammed (2), Shahad Kh. Al-Qaisi (3), Osama A. Mohsein (4)
(1) Department of Basic Science, College of Nursing, Al Muthanna University, Al-Samawah City, Iraq, Iraq,
(2) Department of biotechnology, College of science, University of Diyala, Diyala, Iraq, Iraq,
(3) Biotechnology department , College of science, University of Diyala, Diyala, Iraq, Iraq,
(4) Thi-Qar Health Directorate, Al Habbobi Teaching Hospital, Thi-Qar, Iraq, Iraq

Abstract

Background: Male breast cancer, though rare, requires reliable diagnostic and prognostic markers. This study evaluated tumor markers, hormonal receptors, and inflammatory biomarkers in male breast cancer.


Methods: A case–control study included 150 men with breast cancer and 50 matched controls (38–52 years). Diagnosis was confirmed by clinical evaluation, mammography, and histopathology. Serum was collected and stored at −80°C. Tumor markers—cancer antigen 15-3 (CA15-3), carcinoembryonic antigen (CEA), and alpha-fetoprotein (AFP) and inflammatory biomarkers, interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and C-reactive protein (CRP)  were measured using enzyme-linked immunosorbent assay (ELISA). Hormonal receptors, estrogen receptor (ER), progesterone receptor (PR), and androgen receptor (AR)  were measured by Cobas e411 immunoassay.


Results: Age and education were similar between groups. Patients had higher smoking rates (45% vs. 20%, p = 0.01) and body mass index (28.6 ± 3.2 vs. 26.1 ± 2.8 kg/m², p = 0.02). Tumor markers, hormonal receptors, and inflammatory biomarkers were significantly elevated in patients (p < 0.001). Strong correlations were found between CA15-3 and IL-6 (r = 0.68), ER and CRP (r = 0.55), and PR and TNF-α (r = 0.61).


Conclusions: Elevated tumor markers, hormonal receptors, and inflammatory biomarkers indicate a link between inflammation, hormonal regulation, and tumor progression, highlighting their diagnostic and prognostic value in male breast cancer.

Full text article

Generated from XML file

References

Burstein, H.J.; Mangu, P.B.; Somerfield, M.R.; Schrag, D.; Samson, D.; Holt, L.; Zelman, D.; Ajani, J.A. American Society of Clinical Oncology clinical practice guideline update on the use of chemotherapy sensitivity and resistance assays. J. Clin. Oncol. 2011, 29, 3328–3330. https://doi.org/10.1200/JCO.2011.36.0354.

Carlson, R.W.; Allred, D.C.; Anderson, B.O.; et al. Invasive breast cancer. J. Natl. Compr. Cancer Netw. 2011, 9, 136–222. https://doi.org/10.6004/jnccn.2011.0016.

Cristofanilli, M.; Budd, G.T.; Ellis, M.J.; et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N. Engl. J. Med. 2004, 351, 781–791. https://doi.org/10.1056/NEJMoa040766.

Garreffa, E.; Arora, D. Breast cancer in the elderly, in men and during pregnancy. Surgery 2022, 40, 139–146. https://doi.org/10.1016/j.mpsur.2024.09.004.

Abdelwahab Yousef, A.J. Male Breast Cancer: Epidemiology and Risk Factors. Semin. Oncol. 2017, 44, 267–272. https://doi.org/10.1053/j.seminoncol.2017.11.002.

Avau, F.; Chintinne, M.; Baudry, S.; Buxant, F. Literature review and case report of bilateral intracystic papillary carcinoma associated with an invasive ductal carcinoma in a male breast. Breast Dis. 2022, 41, 5–13. https://doi.org/10.3233/BD-210001.

Allegra, C.J.; Jessup, J.M.; Somerfield, M.R.; et al. ASCO provisional clinical opinion: Testing for KRAS gene mutations in patients with metastatic colorectal carcinoma. J. Clin. Oncol. 2009, 27, 2091–2096. https://doi.org/10.1200/JCO.2009.21.9170.

Gradishar, W.J.; Moran, M.S.; Abraham, J.; et al. NCCN Guidelines Insights: Breast Cancer, Version 4.2021. J. Natl. Compr. Canc. Netw. 2021, 19, 484–493. https://doi.org/10.3390/curroncol30020139.

Guidelinesprogramm Onkologie. Interdisciplinary S3-Guidelines... AWMF. Accessed 11 Feb 2023. https://doi.org/10.3390/cancers16173049.

Seale, K.N.; Tkaczuk, K.H.R. Circulating Biomarkers in Breast Cancer. Clin. Breast Cancer 2022, 22, e319–e331. https://doi.org/10.1016/j.clbc.2021.09.006.

Luo, J.; Xiao, J.; Yang, Y.; et al. Strategies for five tumour markers in breast cancer diagnosis. Front. Oncol. 2023, 12, 1055855. https://doi.org/10.3389/fonc.2022.1055855.

Goldhirsch, A.; Wood, W.C.; Coates, A.S.; et al. Strategies for subtypes – Highlights of the St. Gallen 2011. Ann. Oncol. 2011, 22, 1736–1747. https://doi.org/10.1093/annonc/mdr304.

Hanif, H.; Ali, M.J.; Susheela, A.T.; et al. Update on alpha-fetoprotein for HCC. World J. Gastroenterol. 2022, 28, 216–229. https://doi.org/10.3748/wjg.v28.i2.216.

Desplat-Jégo, S.; Burkly, L.; Putterman, C. Targeting TNF and family in autoimmune diseases. Mediators Inflamm. 2014, 2014, 628748. https://doi.org/10.1155/2014/628748.

Alfano, C.M.; Peng, J.; Andridge, R.R.; et al. Inflammatory cytokines and comorbidities in breast cancer survivors. J. Clin. Oncol. 2017, 35, 149–156. https://doi.org/10.1200/JCO.2016.67.1883.

Bachelot, T.; Ray-Coquard, I.; Menetrier-Caux, C.; et al. Prognostic value of IL-6 in breast cancer. Br. J. Cancer 2003, 88, 1721–1726. https://doi.org/10.1038/sj.bjc.6600956.

Birbo, B.; Madu, E.E.; Madu, C.O.; et al. Role of HSP90 in Cancer. Int. J. Mol. Sci. 2021, 22, 10317. https://doi.org/10.3390/ijms221910317.

Cheng, Q.; Chang, J.T.; Geradts, J.; et al. HSP90 expression in HER2-negative breast cancer. Breast Cancer Res. 2012, 14, R62. https://doi.org/10.1186/bcr3168.

Pick, E.; Kluger, Y.; Giltnane, J.M.; et al. High HSP90 expression linked to poor survival. Cancer Res. 2007, 67, 2932–2937. https://doi.org/10.1158/0008-5472.CAN-06-4511.

Padron-Monedero, A.; et al. Smoking and survival in male breast cancer. Breast Cancer Res. Treat. 2015, 153, 679–687. https://doi.org/10.1007/s10549-015-3582-1.

Konishi, T.; et al. Short-term outcomes between men and women with breast cancer. Breast Cancer Res. Treat. 2021, 186, 731–739. https://doi.org/10.1007/s10549-020-06069-4.

Alsayer, R.M.; et al. Lifestyle risk factors for breast cancer in Saudi women. Breast Cancer: Targets Ther. 2024, 545–554. https://doi.org/10.2147/BCTT.S463193.

Fakhri, N.; et al. Risk factors for breast cancer in women: an updated review. Med. Oncol. 2022, 39(12), 197. https://doi.org/10.1007/s12032-022-01804-x.

Ryu, J.M.; et al. CA15-3 in early breast cancer. J. Breast Cancer 2023, 26(2), 126. https://doi.org/10.4048/jbc.2023.26.e17.

Zou, P.; et al. Prognostic value of CEA, CA153, HE4, and inflammation in breast cancer. Afr. Health Sci. 2024, 24(4), 224–232. https://doi.org/10.4314/ahs.v24i4.29.

Zhu, Z.; et al. AFP peptide and prostate cancer. Med. Oncol. 2022, 39(1), 2. https://doi.org/10.1007/s12032-021-01598-4.

Khan, N.A.J.; Tirona, M. Review on male breast cancer. Med. Oncol. 2021, 38(4), 39. https://doi.org/10.1007/s12032-021-01486-x.

Reinisch, M.; et al. Endocrine therapy for male breast cancer: MALE trial. JAMA Oncol. 2021, 7(4), 565–572. https://doi.org/10.1001/jamaoncol.2020.7442.

Wang, X.; Liu, S.; Xue, Y. Prognosis of male breast cancer. J. Int. Med. Res. 2021, 49(10), 03000605211049977. https://doi.org/10.1177/03000605211049977.

Yardley, D.A.; et al. Orteronel in AR-expressing MBC. Clin. Breast Cancer 2022, 22(3), 269–278. https://doi.org/10.1016/j.clbc.2021.10.011.

Lin, A.P.; Huang, T.W.; Tam, K.W. Treatment of male breast cancer: Meta-analysis. Br. J. Surg. 2021, 108(9), 1034–1042. https://doi.org/10.1093/bjs/znab279.

Burstein, H.J.; et al. Endocrine and targeted therapy for HR+/HER2− metastatic breast cancer. J. Clin. Oncol. 2021, 39(35), 3959–3977. https://doi.org/10.1200/JCO.21.01392.

Tsoi, H.; et al. Targeting IL-6/STAT3 to reverse tamoxifen resistance. Cancers 2021, 13(7), 1511. https://doi.org/10.3390/cancers13071511.

Gu, Y.; et al. Inflammatory markers and CA199 in pancreatic cancer. BMC Cancer 2023, 23(1), 227. https://doi.org/10.1186/s12885-023-10653-4.

Romero-Elías, M.; et al. CRP and physical fitness in breast cancer survivors. J. Clin. Med. 2022, 12(1), 65. https://doi.org/10.3390/jcm12010065.

Parimelazhagan, R.; et al. [Retracted] Visfatin and cytokines in hypertension. Biomed. Res. Int. 2021, 2021, 8568926. https://doi.org/10.1155/2024/9820645.

Powell, I.J.; et al. Pro-inflammatory cytokines in prostate cancer and racial disparity. Urol. Oncol. 2021, 39(1). https://doi.org/10.1016/j.urolonc.2020.08.019.

Tarighati, E.; Keivan, H.; Mahani, H. Review of biomarkers in breast cancer. Clin. Exp. Med. 2023, 23(1), 1–16. https://doi.org/10.1007/s10238-021-00781-1.

Cairat, M.; et al. Inflammatory biomarkers and breast cancer risk. BMC Med. 2022, 20(1), 118. https://doi.org/10.1186/s12916-022-02319-y.

Hussain, A.M.; Ali, A.H.; Mohammed, H.L. Correlation between serum and tissue markers in breast cancer Iraqi patients. Baghdad Sci. J. 2022, 19(3), 0501–0501.

Authors

Mustafa H. Ghazi
Zainab Abd Mohammed
Shahad Kh. Al-Qaisi
Osama A. Mohsein
osama.a.aday@lecturers.stu.edu.iq (Primary Contact)
1.
Ghazi MH, Mohammed ZA, Al-Qaisi SK, Mohsein OA. Evaluation of Association between Tumor Markers, Hormonal Receptors, Inflammatory Biomarkers and Breast Cancer: Biomarkers in Breast Cancer. Arch Breast Cancer [Internet]. [cited 2025 Nov. 12];13(1). Available from: https://archbreastcancer.com/index.php/abc/article/view/1159

Article Details