Differential Expression of miR-143-5p and miR-744-5p with HIF1A Across Breast Cancer Grade and Treatment status in Iraqi Females miRNAs and HIF1A in Breast Cancer

Hatem M. Hadeed (1), Maarib N. Rasheed (2), Ahmed Suleiman (3)
(1) Department of Clinical Laboratories Sciences, College of Pharmacy, University of Anbar,Ramadi, Iraq, Iraq,
(2) Institute of Genetic Engineering and Biotechnology for Postgraduate Studies, University of Baghdad, Baghdad, Iraq , Iraq,
(3) University of Anbar, Iraq

Abstract

Background: Breast cancer accounts for 25% of all cancer cases and 15% of all cancer related deaths among women. Hypoxia-inducible factor-1alpha (HIF1A) is a crucial regulator of cellular responses to hypoxia. The aim of the study is to analyze the gene expression of different types of miRNAs (miR-143-5p and miR-744-5p) as a molecular tumor marker in relation with HIF1A gene.


Methods: The study included 100 newly diagnosed cases of BC who attended Oncology Center in Al-Anbar, Iraq from July 2024 to January 2025.  After RNA extraction and cDNA creation, real-time PCR was used to quantitatively measure miRNAs expression levels for women with breast cancer (BC) and healthy control.  .


Results: The results showed that miR-143-5p exhibited significantly higher expression levels in high grade after treatment (HAT) and low grade before treatment (LBT) samples compared to Control, high grade before treatment (HBT), and low grade after treatment (LAT) samples. In contrast, miR-744-5p did not show significant differences in expression across the different sample types. HIF1A shows no statistically significant correlations with any of the other measured molecules in either the control group (miR-143-5p: r = -0.25, p = 0.32; miR-744-5p: r = -0.32, p = 0.23, for any of the experimental groups (all p-values > 0.05). MiR-744-5p showing moderate potential (AUC 0.629). HIF-1α exhibited high diagnostic potential in the HBT with AUC value 0.774 and moderate diagnostic in the HAT with AUC value 0.647 indicate that HIF1A gene good diagnostic marker of Bc.


Conclusion: The findings suggest that miR-143-5p may serve as a potential biomarker for breast cancer.

Full text article

Generated from XML file

References

Rasheed MN. Evaluation of DNA methylation of MAP9 gene in breast cancer as epigenetic biomarker. Biomedicine. 2022;42(2):227-9.

Salih AM, Aziz IH, Mohsin FY. Role of miRNA 199a-5p expression in Iraqi women with breast cancer. Al-Rafidain J Med Sci. 2023;5(1S):S94-9. doi:10.54133/ajms.v5i1S.308

Hashim HT, Ramadhan MA, Theban KM, Bchara J, El-Abed-El-Rassoul A, Shah J. Assessment of breast cancer risk among Iraqi women in 2019. BMC Womens Health. 2021;21(1):412. doi:10.1186/s12905-021-01557-1

Alwan NAS. Breast cancer among Iraqi women: preliminary findings from a regional comparative breast cancer research project. J Glob Oncol. 2016;2(5):255-8. doi:10.1200/JGO.2015.003087

Gandellini P, Doldi V, Zaffaroni N. microRNAs as players and signals in the metastatic cascade: implications for the development of novel anti-metastatic therapies. Semin Cancer Biol. 2017;44:132-40. doi:10.1016/j.semcancer.2017.03.005

Kim J, Yao F, Xiao Z, Sun Y, Ma L. MicroRNAs and metastasis: small RNAs play big roles. Cancer Metastasis Rev. 2018;37(1):5-15. doi:10.1007/s10555-017-9712-y

Xu J, Li X, Zhang P, Luo J, Mou E, Liu S. miR-143-5p suppresses breast cancer progression by targeting the HIF-1α-related GLUT1 pathway. Oncol Lett. 2022;23(5):147. doi:10.3892/ol.2022.13268

Mansoori B, Kiani S, Mezajin AA, Zandi P, Banaie H, Rostamzadeh D, et al. MicroRNA-143-5p suppresses ER-positive breast cancer development by targeting oncogenic HMGA2. Clin Breast Cancer. 2023;23(7):e480-e490.e3. doi:10.1016/j.clbc.2023.07.011

Peng X, Gao H, Xu R, Wang H, Mei J, Liu C. The interplay between HIF-1α and noncoding RNAs in cancer. J Exp Clin Cancer Res. 2020;39(1):27. doi:10.1186/s13046-020-1535-y

Engstrøm MJ, Opdahl S, Hagen AI, Romundstad PR, Akslen LA, Haugen OA, et al. Molecular subtypes, histopathological grade and survival in a historic cohort of breast cancer patients. Breast Cancer Res Treat. 2013;140(3):463-73. doi:10.1007/s10549-013-2647-2

Semenza GL. Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol Sci. 2012;33(4):207-14. doi:10.1016/j.tips.2012.01.005

Bui BP, Nguyen PL, Lee K, Cho J. Hypoxia-inducible factor-1: a novel therapeutic target for the management of cancer, drug resistance, and cancer-related pain. Cancers (Basel). 2022;14(24):6054. doi:10.3390/cancers14246054

Shih JW, Kung HJ. Long non-coding RNA and tumor hypoxia: new players ushered toward an old arena. J Biomed Sci. 2017;24(1):53. doi:10.1186/s12929-017-0358-4

Uva P, Cossu-Rocca P, Loi F, Pira G, Murgia L, Orrù S, et al. miRNA-135b contributes to triple negative breast cancer molecular heterogeneity: different expression profile in basal-like versus non-basal-like phenotypes. Int J Med Sci. 2018;15(6):536-48.

Sales ACV, Gomes da Silva IIF, Leite MCB, Coutinho LL, Reis RBAC, Castoldi A, et al. Mirna21 expression in the breast cancer tumor tissue is independent of neoadjuvant chemotherapy. Breast Cancer (Dove Med Press). 2020;12:141-51. doi:10.2147/BCTT.S269519

Chan DSM, Vieira AR, Aune D, Bandera EV, Greenwood DC, McTiernan A, et al. Body mass index and survival in women with breast cancer: systematic literature review and meta-analysis of 82 follow-up studies. Ann Oncol. 2014;25(10):1901-14. doi:10.1093/annonc/mdu042

Kasiappan R, Rajarajan D. Role of microRNA regulation in obesity-associated breast cancer: nutritional perspectives. Adv Nutr. 2017;8(6):868-88. doi:10.3945/an.117.015800

Abedalrahman S, Ali B, Al-Khalidy N, Al-Hashimi A. Risk factors of breast cancer among Iraqi women. J Contemp Med Sci. 2019;5:1-5. doi:10.22317/jcms.v5i3.609

Al-Khafaji ASK, Hade IM, Al-Naqqash MA, Alnefaie GO. Potential effects of miR-146 expression in relation to malondialdehyde as a biomarker for oxidative damage in patients with breast cancer. World Acad Sci J. 2023;5(1):1-9. doi:10.3892/wasj.2023.187

Makki J. Diversity of breast carcinoma: histological subtypes and clinical relevance. Clin Med Insights Pathol. 2015;8:CPath-S31563.

Özmen V. Breast cancer in Turkey: clinical and histopathological characteristics (analysis of 13,240 patients). J Breast Health. 2014;10(2):98-105. doi:10.5152/tjbh.2014.1988

Hayes DF, Isaacs C, Stearns V. Prognostic factors in breast cancer: current and new predictors of metastasis. J Mammary Gland Biol Neoplasia. 2001;6(4):375-92. doi:10.1023/a:1014778713034

Liu L, Hao X, Song Z, Zhi X, Zhang S, Zhang J. Correlation between family history and characteristics of breast cancer. Sci Rep. 2021;11(1):6360. doi:10.1038/s41598-021-85899-8

Li X, Zeng Z, Wang J, Wu Y, Chen W, Zheng L, et al. MicroRNA-9 and breast cancer. Biomed Pharmacother. 2020;122:109687. doi:10.1016/j.biopha.2019.109687

Authors

Hatem M. Hadeed
Maarib N. Rasheed
Ahmed Suleiman
ahmed.suleiman@uoanbar.edu.iq (Primary Contact)
1.
Hadeed HM, Rasheed MN, Suleiman A. Differential Expression of miR-143-5p and miR-744-5p with HIF1A Across Breast Cancer Grade and Treatment status in Iraqi Females: miRNAs and HIF1A in Breast Cancer. Arch Breast Cancer [Internet]. [cited 2025 Jul. 30];12(4). Available from: https://archbreastcancer.com/index.php/abc/article/view/1110

Article Details