Unveiling the Genomic Landscape: Architectural Insights into Triple-Negative Breast Cancer in Moroccan Patients through Whole Exome Sequencing

Meryem Fakhkhari (1), Sihame Lkhoyaali (2), Amina Gihbid (3), Maroua Boujemaa (4), Ikram Salih (5), Ahmed Rebai (6), Yosr Hamdi (7), Meriem Khyatti (8), Fouzia Radouani (9), Hassan Errihani (10), Khalid Sadki (11)
(1) Research Laboratory in Oral Biology and Biotechnology, Faculty of Dental Medicine, Mohammed V University in Rabat, Morocco, Morocco,
(2) Department of Medical Oncology, National Institute of Oncology, Rabat, Morocco, Morocco,
(3) Laboratory of Pathophysiology, Molecular Genetics and Biotechnology, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco dLaboratory of Viral Oncology, Institut Pasteur du Maroc, Casablanca, Morocco, Morocco,
(4) Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia, Tunisia,
(5) Research Laboratory in Oral Biology and Biotechnology, Faculty of Dental Medicine, Mohammed V University in Rabat, Morocco, Morocco,
(6) Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia, Tunisia,
(7) Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia; Laboratory of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis, Tunisia, Tunisia,
(8) Laboratory of Viral Oncology, Institut Pasteur du Maroc, Casablanca, Morocco, Morocco,
(9) Research Department, Institut Pasteur du Maroc, Casablanca, Morocco, Morocco,
(10) Department of Medical Oncology, National Institute of Oncology, Rabat, Morocco, Morocco,
(11) Research Laboratory in Oral Biology and Biotechnology, Faculty of Dental Medicine, Mohammed V University in Rabat, Morocco, Morocco

Abstract

Background: Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer characterized by the absence of hormone receptors and HER2 expression, resulting in limited treatment options and poorer prognoses. This study investigates the genetic landscape of TNBC in Moroccan patients through high-throughput whole-exome sequencing (WES) to identify genetic alterations that could enhance diagnostic accuracy and inform targeted therapies.


Case Presentation: This study included 10 unrelated Moroccan female patients diagnosed with TNBC, recruited from the National Institute of Oncology in Rabat, Morocco. Clinical data including tumor location, SBR grade, histological type, lymph node involvement, and Ki-67 index were collected. Tumor grades varied from SBR grade II to IV, with some cases demonstrating metastasis to distant organs. The Ki-67 index ranged from 10% to 80%, indicating a range of tumor proliferative activity across the cohort. Genetic analysis through WES, performed on DNA extracted from blood samples, revealed recurrent variants in several non-canonical cancer-related genes, including CTBP2, IGSF3, LRRK2, ZNF334, NMNAT1, and TPRG1. Notably IGSF3 and CTBP2 exhibited common mutations across all patients. These findings highlight the genetic diversity and potential molecular drivers of TNBC in this cohort.


Conclusion: This study provides insights into the genetic landscape of TNBC in Moroccan patients. The study highlights novel genetic variations in CTBP2, IGSF3, ZNF334, TPRG1, and NMNAT1, suggesting their potential as biomarkers and therapeutic targets for TNBC. These findings emphasize the importance of investigating genetic alterations in underrepresented populations, which could help refine treatment strategies and predict treatment responses. Further research in larger cohorts is needed to validate these findings and develop personalized therapeutic approaches for TNBC patients.

Full text article

Generated from XML file

References

Coles CE, Aranda B, Coleman RE, Caldas C, Cutress RI, Eccles DM, et al. The Lancet Breast Cancer Commission: tackling a global health, gender, and equity challenge. Lancet. 2022;399(10330):1101 1103. doi: 10.1016/S0140-6736(22)00184-2

Wilkinson L, Gathani T. Understanding breast cancer as a global health concern. Br J Radiol. 2022;95(1130):20211033. doi: 10.1259/bjr.20211033.

International Agency for Research on Cancer. Cancer today [Internet] 2022. Available from: https://gco.iarc.fr/today/en/dataviz/bars-compare-populations?mode=cancer&group_populations=1&populations=900&key=total&sexes=0&types=1&sort_by=value0.

Adeloye D, Olaperi YS, Wura J, Rotimi AD, Adeyemi AA, Ann OA, et al. Estimating the incidence of breast cancer in Africa: a systematic review and meta-analysis. J Glob Health. 2018;8(1):010419. doi: 10.7189/jogh.08.010419.

Association Lalla Salma de lutte contre le cancer. Registre des cancers de la région du Grand Casablanca, Rapport d'incidence 2013-2017 [Internet]. Available from: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.contrelecancer.ma/site_media/uploaded_files/Registre_des_Cancers_de_la_Region_du_Grand_Casablanca_2013-2017.pdf

Vanderpuye V, Grover S, Hammad N, Prabhakar P, Simonds H, Olopade F, et al. An update on the management of breast cancer in Africa. Infect Agents Cancer. 2017;12(1):13. doi: 10.1186/s13027-017-0124-y.

Corbex M, Bouzbid S, Boffetta P. Features of breast cancer in developing countries, examples from North-Africa. Eur J Cancer. 2014;50(10):1808 1818. doi: 10.1016/j.ejca.2014.03.016.

Chouchane L, Boussen H, Sastry KSR. Breast cancer in Arab populations: molecular characteristics and disease management implications. Lancet Oncol. 2013;14(10):e417 e424. doi: 10.1016/S1470-2045(13)70165-7.

Akasbi Y, Sanae B, Fouad A, Kawtar Z, Khalid AJ, Afaf A, et al. Clinicopathological, therapeutic and prognostic features of triple-negative tumors in Moroccan breast cancer patients (experience of Hassan II University Hospital in Fez). BMC Res Notes. 2011;4(1):500. doi: 10.1186/1756-0500-4-500.

Rais G, Razine R, Mrabti H, Kaikani W, Benchekroun S, Souadka A, et al. Triple-negative breast cancer in Moroccan women: clinicopathological and therapeutic study at the National Institute of Oncology. BMC Womens Health. 2012;12:35. doi: 10.1186/1472-6874-12-35.

Slaoui M, Razine R, Ibrahimi A, Attaleb M, El Mzibri M, Amrani M. Outcome of inflammatory breast cancer in Moroccan patients: clinical, molecular and pathological characteristics of 219 cases from the National Oncology Institute (INO). BMC Cancer. 2018;18:713. doi: 10.1186/s12885-018-4634-9.

Mouh FZ, Slaoui M, Razine R, El Mzibri M, Amrani M. Clinicopathological, treatment, and event-free survival characteristics in a Moroccan population of triple-negative breast cancer. Breast Cancer Basic Clin Res. 2020;14:1178223420906428. doi: 10.1177/1178223420906428.

Al Jarroudi O, Abda N, Brahmi S, Afqir S. Triple-negative breast cancer at the University Hospital Mohammed VI – Oujda. Asian Pac J Cancer Prev. 2017;18(1):195 200. doi: 10.22034/APJCP.2017.18.1.195.

Onuiri EE. Clinical associations and genetic alterations to predict radiotherapy treatment response in patients with triple-negative breast cancer (TNBC) [dissertation on the Internet]. Rutgers University; 2020. Available from: https://rucore.libraries.rutgers.edu/rutgers-lib/64650/

Chehade R, Awan AA, Fernandes R. A narrative review of biomarkers in advanced triple-negative breast cancer. Precis Cancer Med. 2021;4(0). doi: 10.21037/pcm-20-76.

Slaoui M, Razine R, Ibrahimi A, Attaleb M, El Mzibri M, Amrani M. Breast cancer in Morocco: a literature review. Asian Pac J Cancer Prev. 2014;15(3):1067 1074. doi: 10.7314/APJCP.2014.15.3.1067.

El Ansari FZ, Farah J, Rim F, Joaira B, Naima GN, Amina B, et al. BRCA1/2 variants and copy number alterations status in non-familial triple-negative breast cancer and high-grade serous ovarian cancer. Hered Cancer Clin Pract. 2022;20(1):29. doi: 10.1186/s13053-022-00236-y.

Errihani H, Boutayeb S, Farik M, Ahbedou N, Youssef B, Kacimi H, et al. The inflammatory breast cancer – Moroccan experience. Eur J Cancer Suppl. 2008;6:76. doi: 10.1016/S1359-6349(08)70407-5.

Aznag FZ, Elouilamine E, Basselam MA, Chadli S, Cadi MAE, Izaabel EH. Epidemiological and biological profiling of breast cancer in southern Morocco. Integr J Med Sci. 2018;5. doi: 10.15342/ijms.v5ir.240.

Khalis M, Razine R, Charaka H, Chouaib H, Bennani A, Saadi S, et al. Female breast cancer incidence and mortality in Morocco: comparison with other countries. Asian Pac J Cancer Prev. 2016;17(12):5211 5216. doi: 10.22034/APJCP.2016.17.12.5211.

Giuli MV, Giuliani E, Screpanti I, Bellavia D, Checquolo S. Notch signaling activation as a hallmark for triple-negative breast cancer subtype. J Oncol. 2019;2019:8707053. doi: 10.1155/2019/8707053.

Wright N, Bhattarai S, Sahoo B, Syed MI, Rida P, Aneja R. Notch signaling pathway: an emerging therapeutic target for African-American triple-negative breast cancer patients. Cancer Health Disparities. 2019. Available from: https://companyofscientists.com

Qi Y, Liu J, Ren J, Zhang W, Li M, Zhou X, et al. Notch1 promotes resistance to cisplatin by up-regulating ecto-5′-nucleotidase (CD73) in triple-negative breast cancer cells. Cell Death Discov. 2023;9(1):1 9. doi: 10.1038/s41420-023-01487-x.

Li X, Yan X, Wang Y, Kaur B, Han H, Yu J, et al. The Notch signaling pathway: a potential target for cancer immunotherapy. J Hematol Oncol. 2023;16(1):45. doi: 10.1186/s13045-023-01439-z.

Shi Q, Chen X, Zhang Y, Yang X, Qian C, Jing S, et al. Notch signaling pathway in cancer: from mechanistic insights to targeted therapies. Signal Transduct Target Ther. 2024;9(1):1 37. doi: 10.1038/s41392-024-01828-x.

Wang K, Qin Z, Li D, Keith C, Cathy Z, Zhang X, et al. PEST domain mutations in Notch receptors comprise an oncogenic driver segment in triple-negative breast cancer sensitive to a γ-secretase inhibitor. Clin Cancer Res. 2015;21(6):1487 1496. doi: 10.1158/1078-0432.CCR-14-1348.

Liu Y, Zhang C, Tong T, Wang J, Chen N, Zhou H, et al. MYC dysfunction modulates stemness and tumorigenesis in breast cancer. Int J Biol Sci. 2021;17(1):178 187. doi: 10.7150/ijbs.51458.

Fallah Y, Brundage J, Allegakoen P, Shajahan-Haq AN. MYC-driven pathways in breast cancer subtypes. Biomolecules. 2017;7(3):53. doi: 10.3390/biom7030053.

Zhang C, Gao C, Xu Y, Zhang Z. CtBP2 could promote prostate cancer cell proliferation through c-Myc signaling. Gene. 2014;546(1):73 79. doi: 10.1016/j.gene.2014.05.032.

Chen L, Yang Y, Xu L, Liu R, Wang Y. Integrated gene expression profiling and chromatin immunoprecipitation followed by sequencing: analysis of the C-terminal binding protein in breast cancer. J Obstet Gynaecol Res. 2017;43(9):1472 1480. doi: 10.1111/jog.13400.

Yang X, Yan S, Liu H, Sun Y, Zheng Z, Yuan W, et al. C-terminal binding protein-2 promotes cell proliferation and migration in breast cancer via suppression of p16INK4A. Oncotarget. 2017;8(16):26154 26168. doi: 10.18632/oncotarget.15402.

Ju Q, Jiang M, Huang W, Yang Q, Luo Z, Shi H. CtBP2 interacts with TGIF to promote the progression of esophageal squamous cell cancer through the Wnt/β-catenin pathway. Oncol Rep. 2022;47(2):29. doi: 10.3892/or.2021.8240.

Jen J, Wang YC. Zinc finger proteins in cancer progression. J Biomed Sci. 2016;23:53. doi: 10.1186/s12929-016-0269-9.

Cheng Z, Renjie Y, Li L, Junhao M, Yijia G, Fan W, et al. Disruption of ZNF334 promotes triple-negative breast carcinoma malignancy through the SFRP1/Wnt/β-catenin signaling axis. Cell Mol Life Sci. 2022;79(5):280. doi: 10.1007/s00018-022-04295-1.

Frenquelli M, Tonon G. WNT signaling in hematological malignancies. Front Oncol. 2020;10:615190. doi: 10.3389/fonc.2020.615190.

Gajos-Michniewicz A, Czyz M. WNT signaling in melanoma. Int J Mol Sci. 2020;21(14):4852. doi: 10.3390/ijms21144852.

Dittmer J. Breast cancer stem cells: features, key drivers and treatment options. Semin Cancer Biol. 2018. doi: 10.1016/j.semcancer.2018.07.007.

Merikhian P, Eisavand MR, Farahmand L. Triple-negative breast cancer: understanding Wnt signaling in drug resistance. Cancer Cell Int. 2021;21:419. doi: 10.1186/s12935-021-02107-3.

Maubant S, Taboubi S, Viricel C, Dubois T. The Wnt3a targetome in triple-negative breast cancer cell lines. Cancer Res. 2015;75(15_Suppl):41. doi: 10.1158/1538-7445.AM2015-41.

Wang Y, Joyce ZG, Taylor S, Thorsten M, Prajwal G, Nandakumar SN, et al. LRRK2 G2019S promotes colon cancer potentially via LRRK2–GSDMD axis-mediated gut inflammation. Cells. 2024;13(7):565. doi: 10.3390/cells13070565.

Hulihan MM, Ishihara-Paul L, Kachergus J, Warren L, Amouri R, Elango R, et al. LRRK2 Gly2019Ser penetrance in Arab-Berber patients from Tunisia: a case-control genetic study. Lancet Neurol. 2008. https://doi.org/10.1016/S1474-4422(08)70116-9.

Kachergus J, Flierl A, Heckman M, Prokisch H, Munz M, Meyer S, et al. Identification of a novel LRRK2 mutation linked to autosomal dominant parkinsonism: evidence of a common founder across European populations. Am J Hum Genet. 2005. https://doi.org/10.1086/429256.

Marder K, Wang Y, Roy A, Harris SE, Tosto G, Vitale E, et al. Age-specific penetrance of LRRK2 G2019S in the Michael J. Fox Ashkenazi Jewish LRRK2 Consortium. Neurology. 2015;85. doi: 10.1212/WNL.0000000000001708.

Bouhouche A, Houyam T, Rafiqua BH, Khalil EB, Rachid R, Sanaa T, et al. LRRK2 G2019S mutation: prevalence and clinical features in Moroccans with Parkinson’s disease. Parkinsons Dis. 2017. https://doi.org/10.1155/2017/2412486.

Kmiecik MJ, Mouchantaf F, San Jose J, He Z, Nelson L, Liu W, et al. Genetic analysis and natural history of Parkinson’s disease due to the LRRK2 G2019S variant. Brain. 2024;147(6):1996 2008. doi: 10.1093/brain/awae073.

Jung K, Joon-Seok C, Beom-Mo K, Yu JK, Ji-Young S, Minjung S, et al. TM4SF4 and LRRK2 are potential therapeutic targets in lung and breast cancers through outlier analysis. Cancer Res Treat. 2021. doi: 10.4143/crt.2020.434.

Kuribayashi H, Baba Y, Iwagawa T, Arai E, Murakami A, Watanabe S. Roles of Nmnat1 in the survival of retinal progenitors through the regulation of pro-apoptotic gene expression via histone acetylation. Cell Death Dis. 2018;9(9):1 14. doi: 10.1038/s41419-018-0907-0.

Sokolov D, Sechrest E, Wang Y, Nevin C, Du J, Kolandaivelu S. Nuclear NAD+-biosynthetic enzyme NMNAT1 facilitates survival of developing retinal neurons. Elife. 2021. doi: 10.1101/2021.05.05.442836.

Habibi I, Fekih Y, Tabka H, Kaabachi W, Elloumi T, Chakroun M, et al. Genetic spectrum of retinal dystrophies in Tunisia. Sci Rep. 2020;10(1):11199. doi: 10.1038/s41598-020-67792-y.

Greenwald SH, Chan CW, Qi L, Askarinam A, Cheong MS, Fridovich-Keil JL, et al. Gene therapy preserves retinal structure and function in a mouse model of NMNAT1-associated retinal degeneration. Mol Ther Methods Clin Dev. 2020. https://doi.org/10.1016/j.omtm.2020.07.003.

Minafò YA, Antonini D, Dellambra E. NAD+ metabolism-related gene profile can be a relevant source of squamous cell carcinoma biomarkers. Cancers (Basel). 2024. https://doi.org/10.3390/cancers16020309.

Sharma P, Jihong X, Katie W, Michelle E, Brad JE, Russell L, et al. Inhibition of nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme of the nicotinamide adenine dinucleotide (NAD) salvage pathway, to target glioma heterogeneity through mitochondrial oxidative stress. Neuro Oncol. 2022;24(2):229 244. https://doi.org/10.1093/neuonc/noab175.

Shi X, Jiang Y, Kawasaki A, Hosono T, Matsushita R, Liu Y, et al. Nuclear NAD+ homeostasis governed by NMNAT1 prevents apoptosis of acute myeloid leukemia stem cells. Sci Adv. 2021;7(30):eabf3895. doi: 10.1126/sciadv.abf3895.

Badawy AAB. Tryptophan metabolism and disposition in cancer biology and immunotherapy. Biosci Rep. 2022;42(11):BSR20221682. doi: 10.1042/BSR20221682.

Guo Y, Kanemitsu Y, Takahashi Y, Osada Y, Satoh T, Inoue T, et al. IGSF3 is a homophilic cell adhesion molecule that drives lung metastasis of melanoma by promoting adhesion to vascular endothelium. Cancer Sci. 2024;115(6):1936 1947. doi: 10.1111/cas.16166.

Sheng P, Zhang H, Li S, Xu Y, Pan W, Sun J, et al. The immunoglobulin superfamily member 3 (IGSF3) promotes hepatocellular carcinoma progression through activation of the NF-κB pathway. Ann Transl Med. 2020;8(6):378. doi: 10.21037/atm.2020.02.14.

Hong T, Piao S, Sun L, Tao Y, Ke M. Tumor protein P63 regulated 1 contributes to inflammation and cell proliferation of cystitis glandularis through regulating the NF-кB/cyclooxygenase-2/prostaglandin E2 axis. Bosn J Basic Med Sci. 2022;22(1):100 109. https://doi.org/10.17305/bjbms.2021.6763.

Choi JH, Kang SM, Moon SU, Yoo SY, Lee HJ, et al. TPRG1‐AS1 induces RBM24 expression and inhibits liver cancer progression by sponging miR‐4691‐5p and miR‐3659. Liver Int. 2021;41(11):2788 2800. doi: 10.1111/liv.15026.

Authors

Meryem Fakhkhari
Meryem_fakhkhari@um5.ac.ma (Primary Contact)
Sihame Lkhoyaali
Amina Gihbid
Maroua Boujemaa
Ikram Salih
Ahmed Rebai
Yosr Hamdi
Meriem Khyatti
Fouzia Radouani
Hassan Errihani
Khalid Sadki
1.
Fakhkhari M, Lkhoyaali S, Gihbid A, Boujemaa M, Salih I, Rebai A, Hamdi Y, Khyatti M, Radouani F, Errihani H, Sadki K. Unveiling the Genomic Landscape: Architectural Insights into Triple-Negative Breast Cancer in Moroccan Patients through Whole Exome Sequencing. Arch Breast Cancer [Internet]. [cited 2025 Apr. 24];12(3). Available from: https://archbreastcancer.com/index.php/abc/article/view/1081

Article Details