Improving Early Breast Cancer Detection with Artificial Intelligence: A Promising Approach Early BC detection with AI
Abstract
N/A
Full text article
References
Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature 2000; 406:747-752. doi: 10.1038/35021093.
Ruidas B, Sur TK, Das Mukhopadhyay C, Sinha K, Som Chaudhury S, Sharma P, et al. Quercetin: A silent retarder of fatty acid oxidation in breast cancer metastasis through steering of mitochondrial CPT1. Breast Cancer, 2022; 29(4): 748-760. doi: 10.1007/s12282-022-01356-y.
Bauer KR, Brown M, Cress RD, Parise CA, Caggiano V. Descriptive analysis of estrogen receptor (er)-negative, progesterone receptor (pr)-negative, and her2-negative invasive breast cancer, the so-called triple-negative phenotype: a population-based study from the California cancer registry. Cancer 2007; 109:1721-1728. doi: 10.1002/cncr.22618.
Ruidas B, Sur TK, Pal K, Som Chaudhury S, Prasad P, Sinha K, et al. Herbometallic nano-drug inducing metastatic growth inhibition in breast cancer through intracellular energy depletion. Mol Biol Rep., 2020; 47: 3745-3763. doi: 10.1007/s11033-020-05467-7.
Mikhael PG, Wohlwend J, Yala A, Karstens L, Xiang J, Takigami AK, et al. Sybil: A validated deep learning model to predict future lung cancer risk from a single low-dose chest computed tomography. Journal of Clinical Oncology. 2023; 41(12): 2191-2200. doi: 10.1200/JCO.22.01345.
Erickson BJ, Korfiatis P, Akkus Z, Kline TL. Machine learning for medical imaging. Radiographics, 2017; 37: 505-515. doi: 10.1148/rg.2017160130.
Mukherjee R, Kundu S, Dutta K, Sen A. Predictive Diagnosis of Glaucoma Based on Analysis of Focal Notching along the Neuro-Retinal Rim Using Machine Learning. Pattern Recognit. Image Anal. 2019; 29, 523–532. doi: 10.1134/S1054661819030155.
Coleman C. Early detection and screening for breast cancer. Semin Oncol Nurs. 2017; 33: 141–155. doi: 10.1016/j.soncn.2017.02.009
Dasgupta S, Mukherjee R, Dutta K, Sen A. Deep learning based framework for automatic diagnosis of glaucoma based on analysis of focal notching in the optic nerve head.. arXiv. 2021.:2112.05748, 2021. doi: 10.48550/arXiv.2112.05748
Dutta K, Whitehead T, Laforest R, Jha A, Shoghi K. Deep learning based generation of high-count preclinical [18F]-FDG PET images from low-count [18F]-FDG PET images. Journal of Nuclear Medicine (supplement 2), 2022; 3222-3222. Available from: https://jnm.snmjournals.org/content/63/supplement_2/3222
Dutta K, Roy S, Whitehead TD, Luo J, Jha AK, Li S, et al. Deep learning segmentation of triple-negative breast cancer (TNBC) patient derived tumor xenograft (PDX) and sensitivity of radiomic pipeline to tumor probability boundary. Cancers. 2021; 13 (15): 3795. doi: 10.3390/cancers13153795
Dutta K, Whitehead TD, Laforest R, et al. Deep learning based generation of high-count preclinical [18F]-FDG PET images from low-count [18F]-FDG PET images. Medical Imaging 2022: Physics of Medical Imaging, 2022; 12031: 351-360. doi: 10.1117/12.2612729.
Yanagawa M, Niioka H, Hata A, Kikuchi N, Honda O, Kurakami H, et al. Application of deep learning (3-dimensional convolutional neural network) for the prediction of pathological invasiveness in lung adenocarcinoma: a preliminary study. Medicine (Baltimore) 2019;98:0. doi: 10.1097/MD.0000000000016119.
Tran WT, Sadeghi-Naini A, Lu FI, Gandhi S, Meti N, Brackstone M, et al. Computational radiology in breast cancer screening and diagnosis using artificial intelligence. Can Assoc Radiol J. 2021; 72:98–108. doi: 10.1177/0846537120949974.
van Timmeren JE, Cester D, Tanadini-Lang S, Alkadhi H, Baessler B. Radiomics in medical imaging-"how-to" guide and critical reflection. Insights Imaging. 2020; 11: 91. doi: 10.1186/s13244-020-00887-2.
Nir TM, Salminen L, Reina JEV, Tubi MA, Thomopoulos SI, Maiti P, et al. Hippocampal subfield microstructure abnormalities mediate associations between tau burden and memory performance: Neuroimaging/multi‐modal comparisons. Alzheimer's & Dementia, 2020; 16: e039622. doi: 10.1002/alz.039622.
Nir TM, Reina JEV, Salminen L, Haddad E, Zheng H, Thompolous SI, et al. Cortical microstructural associations with CSF amyloid and pTau. medRxiv, 2023; 2023.04. 10.23288366. doi: 10.1101/2023.04.10.23288366.
Liu M, Zhu AH, Maiti P, Thompolous SI, Gadewar S, Chai Y, et al. Style Transfer Generative Adversarial Networks to Harmonize Multi-Site MRI to a Single Reference Image to Avoid Over-Correction. BioRxiv, 2022; 2022.09. 12.506445. doi: 10.1101/2022.09.12.506445.
Shimauchi A, Ginger ML, Bhooshan N, Lan L, Pesce LL, Lee JK, et al. Evaluation of Clinical Breast MR Imaging Performed with Prototype Computer-aided Diagnosis Breast MR Imaging Workstation: Reader Study. Radiology, 2011; 258: 3. doi: 10.1148/radiol.10100409.
Tagliafico AS, Piana M, Schenone D, Lai R, Massone AM, Houssami N. Overview of radiomics in breast cancer diagnosis and prognostication. Breast. 2020; 49: 74–80. doi: 10.1016/j.breast.2019.10.018.
https://www.nytimes.com/2023/03/05/technology/artificial-intelligence-breast-cancer-detection.html#:~:text=Kheiron's%20technology%20was%20first%20used,flags%20areas%20to%20check%20again. [Published March 5, 2023Updated March 6, 2023]
Xu Z, Wang X, Zeng S, Ren X, Yan Y, Gong Z. Applying artificial intelligence for cancer immunotherapy. Acta Pharm Sin B. 2021;11:3393–3405. doi: 10.1016/j.apsb.2021.02.007.
Yuan J, Hu Z, Mahal BA, Zhao SD, Kensler KH, Pi J, et al. Integrated analysis of genetic ancestry and genomic alterations across cancers. Cancer Cell. 2018; 34: 549–560. doi: 10.1016/j.ccell.2018.08.019.
Authors
Copyright (c) 2023 Archives of Breast Cancer
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright©. This is an open-access article distributed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 International License, which permits copy and redistribution of the material in any medium or format or adapt, remix, transform, and build upon the material for any purpose, except for commercial purposes.