Fighting New Wars with old Weapons: Repurposing of Anti-Malarial Drug for Anticancer Therapy Quinacrine role in BC treatment

Main Article Content

Angela Samanta
Angshuman Sarkar https://orcid.org/0000-0003-4453-9529

Keywords

WNT, NOTCH, HEDGEHOG, MAPK/EGFR, p53, Rho, AKT, NF-kβ

Abstract

Background: Quinacrine (QC), an attractive anticancer drug , has been forwarded for clinical evaluation in various cancer types due to its tremendous safety data accumulated since World War II . Its shotgun nature makes it unmissable as a chemotherapy drug that traps and activates multiple pathways.


Results: Recently, QC has been shown to block malignancy by affecting pathways, including RHO signaling, G1/S arrest, ROS emission, and cell death, and ,,, through autophagy. In this review, we have extensively studied QC as an anticancer agent that affect various signaling pathways. We have documented activity via WNT, NOTCH, HEDGEHOG, MAPK, EGFR, P53, RHO, AKT, NF-k and TGF pathways and reformed the already established mode of action of QC.


Conclusion: QC’s effects on multiple key signaling pathways, implicated in the malignant progression of numerous cancer types, make it an exciting candidate as a chemotherapeutic agent for new combination treatments and therapies.

References

1. National Institute for Health. Common Cancer Types - National Cancer Institute. August 22. 2018.
2. Zeng C, Wen W, Morgans AK, Pao W, Shu XO, Zheng W. Disparities by race, age, and sex in the improvement of survival for major cancers: results from the National Cancer Institute Surveillance, Epidemiology, and End Results (SEER) Program in the United States, 1990 to 2010. JAMA oncology. 2015 Apr 1;1(1):88-96. DOI: 10.1001/jamaoncol.2014.161
3. Valcourt DM, Dang MN, Wang J, Day ES. Nanoparticles for manipulation of the developmental Wnt, Hedgehog, and Notch signaling pathways in cancer. Annals of biomedical engineering. 2020 Jul;48(7):1864-84. DOI: 10.1007/s10439-019-02399-7
4. Bryant J, Batis N, Franke AC, Clancey G, Hartley M, Ryan G, Brooks J, Southam AD, Barnes N, Parish J, Roberts S. Repurposed quinacrine synergizes with cisplatin, reducing the effective dose required for treatment of head and neck squamous cell carcinoma. Oncotarget. 2019 Aug 8;10(50):5229. DOI: 10.18632/oncotarget.27156
5. Oien DB, Pathoulas CL, Ray U, Thirusangu P, Kalogera E, Shridhar V. Repurposing quinacrine for treatment-refractory cancer. In Seminars in Cancer Biology 2021 Jan 1 (Vol. 68, pp. 21-30). Academic Press. DOI: 10.1016/j.semcancer.2019.09.021
6. Ehsanian R, Van Waes C, Feller SM. Beyond DNA binding-a review of the potential mechanisms mediating quinacrine's therapeutic activities in parasitic infections, inflammation, and cancers. Cell Communication and Signaling. 2011 Dec;9(1):1-8. DOI: 10.1186/1478-811X-9-13
7. Young MD, Eyles DE. The Efficacy of Chloroquine, Quinacrine, Quinine and Totaquine in the Treatment of Plasmodium malarias Infections (Quartan Malaria). American Journal of Tropical Medicine. 1948;28(1):23-8. DOI: 10.4269/ajtmh.1948.s1-28.23
8. Neznanov N, Gorbachev AV, Neznanova L, Komarov AP, Gurova KV, Gasparian AV, Banerjee AK, Almasan A, Fairchild RL, Gudkov AV. Anti-malaria drug blocks proteotoxic stress response: anti-cancer implications. Cell cycle. 2009 Dec 1;8(23):3960-70. DOI: 10.4161/cc.8.23.10179
9. Zhan T, Rindtorff N, Boutros M. Wnt signaling in cancer. Oncogene. 2017 Mar;36(11):1461-73. DOI: 10.1038/onc.2016.304
10. Lips DJ, Barker N, Clevers H, Hennipman A. The role of APC and beta-catenin in the aetiology of aggressive fibromatosis (desmoid tumors). European Journal of Surgical Oncology (EJSO). 2009 Jan 1;35(1):3-10. DOI: 10.1016/j.ejso.2008.07.003
11. Preet R, Shanmugam R, Mohapatra P, Das D, Satapathy SR, Wyatt MD, Kundu CN. Lycopene synergistically enhances quinacrine action to inhibit Wnt-TCF signaling in breast cancer cells through APC. Cancer Research. 2014 Oct 1;74(19_Supplement):2777-. DOI: 10.1093/carcin/bgs351
12. Siddharth S, Nayak D, Nayak A, Das S, Kundu CN. ABT-888 and quinacrine induced apoptosis in metastatic breast cancer stem cells by inhibiting base excision repair via adenomatous polyposis coli. DNA repair. 2016 Sep 1;45:44-55. DOI: 10.1016/j.dnarep.2016.05.034
13. Kim L, Wong TW. The cytoplasmic tyrosine kinase FER is associated with the catenin-like substrate pp120 and is activated by growth factors. Molecular and Cellular Biology. 1995 Aug;15(8):4553-61. DOI: 10.1128/MCB.15.8.4553
14. Hanna A, Shevde LA. Hedgehog signaling: modulation of cancer properies and tumor mircroenvironment. Molecular cancer. 2016 Dec;15(1):1-4. DOI: 10.1186/s12943-016-0509-3
15. Nayak A, Satapathy SR, Das D, Siddharth S, Tripathi N, Bharatam PV, Kundu C. Nanoquinacrine induced apoptosis in cervical cancer stem cells through the inhibition of hedgehog-GLI1 cascade: Role of GLI-1. Scientific reports. 2016 Feb 5;6(1):1-6. DOI: 10.1038/srep20600
16. Carballo GB, Honorato JR, de Lopes GP. A highlight on Sonic hedgehog pathway. Cell Communication and Signaling. 2018 Dec;16(1):1-5. DOI: 10.1186/s12964-018-0220-7
17. Asadolahi M, Nikzamir A, Sirati-Sabet M, Mirfakhraie R, Salami S, Darbankhales S, Saket-Kisomi K, Ghadiany S. Evaluation of the Gene Expression of Hedgehog Signaling Pathway Components in Response to Quinacrine in MDA-MB 231 Cells. International Journal of Cancer Management. 2020 Mar 31;13(3). DOI: 10.5812/ijcm.92661
18. Aster JC, Pear WS, Blacklow SC. The varied roles of notch in cancer. Annual review of pathology. 2017 Jan 24;12:245. DOI: 10.1146/annurev-pathol-052016-100127
19. Nayak A, Das S, Nayak D, Sethy C, Narayan S, Kundu CN. Nanoquinacrine sensitizes 5-FU-resistant cervical cancer stem-like cells by down-regulating Nectin-4 via ADAM-17 mediated NOTCH deregulation. Cellular Oncology. 2019 Apr;42(2):157-71. DOI: 10.1007/s13402-018-0417-1
20. Yang S, Sheng L, Xu K, Wang Y, Zhu H, Zhang P, Mu Q, Ouyang G. Anticancer effect of quinacrine on diffuse large B cell lymphoma via inhibition of MSI2 NUMB signaling pathway Corrigendum in/10.3892/mmr. 2020.11813. Molecular Medicine Reports. 2018 Jan 1;17(1):522-30. DOI: 10.3892/mmr.2017.7892
21. Sima J, Zhang B, Yu Y, Sima X, Mao Y. Overexpression of Numb suppresses growth, migration, and invasion of human clear cell renal cell carcinoma cells. Tumor Biology. 2015 Apr;36(4):2885-92. DOI: 10.1007/s13277-014-2918-5
22. Diagnostics C. Neurotrophin signaling pathway. Neurotrophin Signaling Pathway—Creative Diagnostics. Available online: Crea-tive-diagnostics. com (accessed on 18 July 2021). 2021.
23. Changchien JJ, Chen YJ, Huang CH, Cheng TL, Lin SR, Chang LS. Quinacrine induces apoptosis in human leukemia K562 cells via p38 MAPK-elicited BCL2 down-regulation and suppression of ERK/c-Jun-mediated BCL2L1 expression. Toxicology and Applied Pharmacology. 2015 Apr 1;284(1):33-41. DOI: 10.1016/j.taap.2015.02.005
24. Gallant JN, Allen JE, Smith CD, Dicker DT, Wang W, Dolloff NG, Navaraj A, El-Deiry WS. Quinacrine synergizes with 5-fluorouracil and other therapies in colorectal cancer. Cancer biology & therapy. 2011 Aug 1;12(3):239-51. DOI: 10.4161/cbt.12.3.17034
25. Jani TS, DeVecchio J, Mazumdar T, Agyeman A, Houghton JA. Inhibition of NF-κB signaling by quinacrine is cytotoxic to human colon carcinoma cell lines and is synergistic in combination with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or oxaliplatin. Journal of Biological Chemistry. 2010 Jun 18;285(25):19162-72. DOI: 10.1074/jbc.M109.091645
26. Romero L, Andrews K, Ng L, O'Rourke K, Maslen A, Kirby G. Human GSTA1-1 reduces c-Jun N-terminal kinase signalling and apoptosis in Caco-2 cells. Biochemical journal. 2006 Nov 15;400(1):135-41. DOI: 10.1042/BJ20060110
27. Kumar M, Martin A, Nirgude S, Chaudhary B, Mondal S, Sarkar A. Quinacrine inhibits GSTA1 activity and induces apoptosis through G1/S arrest and generation of ROS in human non-small cell lung cancer cell lines. Oncotarget. 2020 May 5;11(18):1603. DOI: 10.18632/oncotarget.27558
28. Hu JJ, Tian G, Zhang N. Cytosolic phospholipase A2 and its role in cancer. Clinical Oncology and Cancer Research. 2011 Jun;8(2):71-6. doi: 10.1158/1078-0432.CCR-08-0566
29. De Souza PL, Castillo M, Myers CE. Enhancement of paclitaxel activity against hormone-refractory prostate cancer cells in vitro and in vivo by quinacrine. British journal of cancer. 1997 Jun;75(11):1593-600. DOI: 10.1038/bjc.1997.272
30. Wee P, Wang Z. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers. 2017 May 17;9(5):52. DOI: 10.3390/cancers9050052
31. Mitsudomi T, Yatabe Y. Epidermal growth factor receptor in relation to tumor development: EGFR gene and cancer. The FEBS journal. 2010 Jan;277(2):301-8. DOI: 10.1111/j.1742-4658.2009.07448.x
32. Salas E, Roy S, Marsh T, Rubin B, Debnath J. Oxidative pentose phosphate pathway inhibition is a key determinant of antimalarial induced cancer cell death. Oncogene. 2016 Jun;35(22):2913-22. DOI: 10.1038/onc.2015.348
33. Guo C, Stark GR. FER tyrosine kinase (FER) overexpression mediates resistance to quinacrine through EGF-dependent activation of NF-κB. Proceedings of the National Academy of Sciences. 2011 May 10;108(19):7968-73. DOI: 10.1073/pnas.1105369108
34. Hall A. The cytoskeleton and cancer. Cancer and Metastasis Reviews. 2009 Jun;28(1):5-14. DOI: 10.1007/s10555-008-9166-3
35. Samanta A, Ravindran G, Sarkar A. Quinacrine causes apoptosis in human cancer cell lines through caspase-mediated pathway and regulation of small-GTPase. Journal of Biosciences. 2020 Dec;45(1):1-8. DOI: 10.1007/s12038-020-0011-3
36. Pertz O, Hodgson L, Klemke RL, Hahn KM. Spatiotemporal dynamics of RhoA activity in migrating cells. Nature. 2006 Apr;440(7087):1069-72. DOI: 10.1038/nature04665
37. Nitulescu GM, Van De Venter M, Nitulescu G, Ungurianu A, Juzenas P, Peng Q, Olaru OT, Grădinaru D, Tsatsakis A, Tsoukalas D, Spandidos DA. The Akt pathway in oncology therapy and beyond. International journal of oncology. 2018 Dec 1;53(6):2319-31. DOI: 10.3892/ijo.2018.4597
38. Guo C, Gasparian AV, Zhuang Z, Bosykh DA, Komar AA, Gudkov AV, Gurova KV. 9-Aminoacridine-based anticancer drugs target the PI3K/AKT/mTOR, NF-κB and p53 pathways. Oncogene. 2009 Feb;28(8):1151-61. DOI: 10.1038/onc.2008.460
39. Gingras AC, Raught B, Sonenberg N. mTOR signaling to translation. TOR. 2004:169-97. DOI: 10.1007/978-3-642-18930-2_11
40. Solomon VR, Pundir S, Le HT, Lee H. Design and synthesis of novel quinacrine-[1, 3]-thiazinan-4-one hybrids for their anti-breast cancer activity. European Journal of Medicinal Chemistry. 2018 Jan 1;143:1028-38. DOI: 10.1016/j.ejmech.2017.11.097
41. Mantovani F, Collavin L, Del Sal G. Mutant p53 as a guardian of the cancer cell. Cell Death & Differentiation. 2019 Feb;26(2):199-212. DOI: 10.1038/s41418-018-0246-9
42. Gurova KV, Hill JE, Guo C, Prokvolit A, Burdelya LG, Samoylova E, Khodyakova AV, Ganapathi R, Ganapathi M, Tararova ND, Bosykh D. Small molecules that reactivate p53 in renal cell carcinoma reveal a NF-κB-dependent mechanism of p53 suppression in tumors. Proceedings of the National Academy of Sciences. 2005 Nov 29;102(48):17448-53. DOI: 10.1073/pnas.0508888102
43. Wang W, Gallant JN, Katz SI, Dolloff NG, Smith CD, Abdulghani J, Allen JE, Dicker DT, Hong B, Navaraj A, El-Deiry WS. Quinacrine sensitizes hepatocellular carcinoma cells to TRAIL and chemotherapeutic agents. Cancer biology & therapy. 2011 Aug 1;12(3):229-38. DOI: 10.4161/cbt.12.3.17033
44. Das S, Tripathi N, Preet R, Siddharth S, Nayak A, Bharatam PV, Kundu CN. Quinacrine induces apoptosis in cancer cells by forming a functional bridge between TRAIL-DR5 complex and modulating the mitochondrial intrinsic cascade. Oncotarget. 2017 Jan 3;8(1):248. DOI: 10.18632/oncotarget.11335
45. Changchien JJ, Chen YJ, Huang CH, Cheng TL, Lin SR, Chang LS. Quinacrine induces apoptosis in human leukemia K562 cells via p38 MAPK-elicited BCL2 down-regulation and suppression of ERK/c-Jun-mediated BCL2L1 expression. Toxicology and Applied Pharmacology. 2015 Apr 1;284(1):33-41. DOI: 10.1016/j.taap.2015.02.005
46. Liang R, Yao Y, Wang G, Yue E, Yang G, Qi X, Wang Y, Zhao L, Zheng T, Zhang Y, Wenge Wang E. Repositioning quinacrine toward treatment of ovarian cancer by rational combination with TRAIL. Frontiers in oncology. 2020 Jul 16;10:1118. DOI: 10.3389/fonc.2020.01118
47. Wu X, Wang Y, Wang H, Wang Q, Wang L, Miao J, Cui F, Wang J. Quinacrine inhibits cell growth and induces apoptosis in human gastric cancer cell line SGC-7901. Current therapeutic research. 2012 Feb 1;73(1-2):52-64. DOI: 10.1016/j.curtheres.2012.02.003
48. Portt L, Norman G, Clapp C, Greenwood M, Greenwood MT. Anti-apoptosis and cell survival: a review. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 2011 Jan 1;1813(1):238-59. DOI: 10.1016/j.bbamcr.2010.10.010
49. Mohapatra P, Preet R, Das D, Satapathy SR, Choudhuri T, Wyatt MD, Kundu CN. Quinacrine-mediated autophagy and apoptosis in colon cancer cells is through a p53-and p21-dependent mechanism. Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics. 2012 Nov 1;20(2-3):81-91. DOI: 10.3727/096504012x13473664562628
50. Preet R, Mohapatra P, Mohanty S, Sahu SK, Choudhuri T, Wyatt MD, Kundu CN. Quinacrine has anticancer activity in breast cancer cells through inhibition of topoisomerase activity. International journal of cancer. 2012 Apr 1;130(7):1660-70. DOI: 10.1002/ijc.26158
51. Das S, Nayak A, Siddharth S, Nayak D, Narayan S, Kundu CN. TRAIL enhances quinacrine-mediated apoptosis in breast cancer cells through induction of autophagy via modulation of p21 and DR5 interactions. Cellular oncology. 2017 Dec;40(6):593-607. DOI: 10.1007/s13402-017-0347-3
52. Ashkenazi A. Directing cancer cells to self-destruct with pro-apoptotic receptor agonists. Nature reviews Drug discovery. 2008 Dec;7(12):1001-12. DOI: 10.1038/nrd2637
53. Xia Y, Shen S, Verma IM. NF-κB, an active player in human cancers. Cancer immunology research. 2014 Sep;2(9):823-30. DOI: 10.1158/2326-6066.CIR-14-0112
54. Bach DH, Park HJ, Lee SK. The dual role of bone morphogenetic proteins in cancer. Molecular Therapy-Oncolytics. 2018 Mar 30;8:1-3. DOI: 10.1016/j.omto.2017.10.002
55. Ghebes CA, van Lente J, Post JN, Saris DB, Fernandes H. High-throughput screening assay identifies small molecules capable of modulating the BMP-2 and TGF-β1 signaling pathway. SLAS Discovery: Advancing Life Sciences R&D. 2017 Jan;22(1):40-50. DOI: 10.1177/1087057116669346
56. Ortega I, Adam R. State of the art clinical article, Giardia: overview and update. Clin. Infect. Dis.. 1997; 25:545-50. DOI: 10.1086/513745
57. Puthia MK, Sio SW, Lu J, Tan KS. Blastocystis ratti induces contact-independent apoptosis, F-actin rearrangement, and barrier function disruption in IEC-6 cells. Infection and immunity. 2006 Jul;74(7):4114-23. DOI: 10.1128/IAI.00328-06
58. Friedl P, Wolf K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nature reviews cancer. 2003 May;3(5):362-74. DOI: 10.1038/nrc1075
59. Falini B, Brunetti L, Martelli MP. Dactinomycin in NPM1-mutated acute myeloid leukemia. New England Journal of Medicine. 2015 Sep 17;373(12):1180-2. DOI: 10.1056/NEJMc1509584
60. Ougolkov, A.V. and Billadeau, D.D., 2006. Targeting GSK-3: a promising approach for cancer therapy?. DOI: 10.2217/14796694.2.1.91
61. Anvarian Z, Nojima H, Van Kappel EC, Madl T, Spit M, Viertler M, Jordens I, Low TY, Van Scherpenzeel RC, Kuper I, Richter K. Axin cancer mutants form nanoaggregates to rewire the Wnt signaling network. Nature Structural & Molecular Biology. 2016 Apr;23(4):324-32. DOI: 10.1038/nsmb.3191
62. Cai J, Li R, Xu X, Zhang L, Lian R, Fang L, Huang Y, Feng X, Liu X, Li X, Zhu X. CK1α suppresses lung tumour growth by stabilizing PTEN and inducing autophagy. Nature cell biology. 2018 Apr;20(4):465-78. DOI: 10.1038/s41556-018-0065-8
63. Jeng KS, Sheen IS, Leu CM, Tseng PH, Chang CF. The role of smoothened in cancer. International Journal of Molecular Sciences. 2020 Sep 18;21(18):6863. DOI: 10.3390/ijms21186863
64. Gabay M, Li Y, Felsher DW. MYC activation is a hallmark of cancer initiation and maintenance. Cold Spring Harbor perspectives in medicine. 2014 Jun 1;4(6):a014241. DOI: 10.1101/cshperspect.a014241
65. Casimiro MC, Crosariol M, Loro E, Li Z, Pestell RG. Cyclins and cell cycle control in cancer and disease. Genes & cancer. 2012 Nov;3(11-12):649-57. DOI: 10.1177/1947601913479022
66. Nowell CS, Radtke F. Notch as a tumour suppressor. Nature Reviews Cancer. 2017 Mar;17(3):145-59. DOI: 10.1038/nrc.2016.145
67. Düsterhöft S, Lokau J, Garbers C. The metalloprotease ADAM17 in inflammation and cancer. Pathology-Research and Practice. 2019 Jun 1;215(6):152410. DOI: 10.1016/j.prp.2019.04.002
68. Sun J, Sheng W, Ma Y, Dong M. Potential Role of Musashi-2 RNA-Binding Protein in Cancer EMT. OncoTargets and therapy. 2021; 14:1969. DOI: 10.2147/OTT.S298438
69. Loesch M, Chen G. The p38 MAPK stress pathway as a tumor suppressor or more?. Frontiers in bioscience: a journal and virtual library. 2008;13:3581. DOI: 10.2741/2951
70. Roberts PJ, Der CJ. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene. 2007 May;26(22):3291-310. DOI: 10.1038/sj.onc.1210422
71. Vleugel MM, Greijer AE, Bos R, van der Wall E, van Diest PJ. c-Jun activation is associated with proliferation and angiogenesis in invasive breast cancer. Human pathology. 2006 Jun 1;37(6):668-74. DOI: 10.1016/j.humpath.2006.01.022
72. Muhammad N, Bhattacharya S, Steele R, Phillips N, Ray RB. Involvement of c-Fos in the Promotion of Cancer Stem-like Cell Properties in Head and Neck Squamous Cell Carcinomac-Fos in the Enhancement of Cancer Stem-like Properties. Clinical Cancer Research. 2017 Jun 15;23(12):3120-8. DOI: 10.1158/1078-0432.CCR-16-2811
73. Huebner K, Procházka J, Monteiro AC, Mahadevan V, Schneider-Stock R. The activating transcription factor 2: an influencer of cancer progression. Mutagenesis. 2019 Sep;34(5-6):375-89. DOI: 10.1093/mutage/gez041
74. Wang H, Guo M, Wei H, Chen Y. Targeting MCL-1 in cancer: current status and perspectives. Journal of Hematology & Oncology. 2021 Dec;14(1):1-8. DOI: 10.1186/s13045-021-01079-1
75. Singh RR, Reindl KM. Glutathione S-transferases in cancer. Antioxidants. 2021 Apr 29;10(5):701. DOI: 10.3390/antiox10050701
76. Park JB, Lee CS, Jang JH, Ghim J, Kim YJ, You S, Hwang D, Suh PG, Ryu SH. Phospholipase signalling networks in cancer. Nature Reviews Cancer. 2012 Nov;12(11):782-92. DOI: 10.1038/nrc3379
77. Zhang S, Xiong X, Sun Y. Functional characterization of SOX2 as an anticancer target. Signal Transduction and Targeted Therapy. 2020 Jul 29;5(1):1-7. DOI: 10.1038/s41392-020-00242-3
78. Ivanova IA, Vermeulen JF, Ercan C, Houthuijzen JM, Saig FA, Vlug EJ, Van Der Wall E, Van Diest PJ, Vooijs MA, Derksen PW. FER kinase promotes breast cancer metastasis by regulating α6-and β1-integrin-dependent cell adhesion and anoikis resistance. Oncogene. 2013 Dec;32(50):5582-92. DOI: 10.1038/onc.2013.277
79. Porter AP, Papaioannou A, Malliri A. Deregulation of Rho GTPases in cancer. Small GTPases 2016: 1-16; PMID: 27104658. DOI: 10.1080/21541248.2016.1173767
80. Sabatini DM. mTOR and cancer: insights into a complex relationship. Nature Reviews Cancer. 2006 Sep;6(9):729-34. DOI: 10.1038/nrc1974
81 Musa J, Orth MF, Dallmayer M, Baldauf M, Pardo C, Rotblat B, Kirchner T, Leprivier G, Grünewald TG. Eukaryotic initiation factor 4E-binding protein 1 (4E-BP1): a master regulator of mRNA translation involved in tumorigenesis. Oncogene. 2016 Sep;35(36):4675-88. DOI: 10.1038/onc.2015.515
82. Abbas T, Dutta A. p21 in cancer: intricate networks and multiple activities. Nature Reviews Cancer. 2009 Jun;9(6):400-14. DOI: 10.1038/nrc2657
83. Konopleva M, Martinelli G, Daver N, Papayannidis C, Wei A, Higgins B, Ott M, Mascarenhas J, Andreeff M. MDM2 inhibition: an important step forward in cancer therapy. Leukemia. 2020 Nov;34(11):2858-74. DOI: 10.1038/s41375-020-0949-z
84. Johnstone RW, Frew AJ, Smyth MJ. The TRAIL apoptotic pathway in cancer onset, progression and therapy. Nature Reviews Cancer. 2008 Oct;8(10):782-98. DOI: 10.1038/nrc2465
85. Lopez A, Reyna DE, Gitego N, Kopp F, Zhou H, Miranda-Roman MA, Nordstrøm LU, Narayanagari SR, Chi P, Vilar E, Tsirigos A. Co-targeting of BAX and BCL-XL proteins broadly overcomes resistance to apoptosis in cancer. Nature communications. 2022 Mar 7;13(1):1-8. DOI: 10.1038/s41467-022-28741-7
86. Albakova Z, Armeev GA, Kanevskiy LM, Kovalenko EI, Sapozhnikov AM. HSP70 multi-functionality in cancer. Cells. 2020 Mar 2;9(3):587. DOI: 10.3390/cells9030587
87. Mercogliano MF, Bruni S, Elizalde PV, Schillaci R. Tumor necrosis factor α blockade: an opportunity to tackle breast cancer. Frontiers in oncology. 2020 Apr 22; 10:584. DOI: 10.3389/fonc.2020.00584
88. Taniguchi K, Karin M. NF-κB, inflammation, immunity and cancer: coming of age. Nature Reviews Immunology. 2018 May;18(5):309-24. DOI: 10.1038/nri.2017.142
89. Wu G, Huang F, Chen Y, Zhuang Y, Huang Y, Xie Y. High levels of BMP2 promote liver cancer growth via the activation of myeloid-derived suppressor cells. Frontiers in oncology. 2020 Mar 4;10:194. DOI: 10.3389/fonc.2020.00194
90. Kallioniemi A. Bone morphogenetic protein 4—a fascinating regulator of cancer cell behavior. Cancer genetics. 2012 Jun 1;205(6):267-77. DOI: 10.1016/j.cancergen.2012.05.009
91. Samanta A, Sarkar A. Altered expression of ERK, Cytochrome-c, and HSP70 triggers apoptosis in Quinacrine-exposed human invasive ductal carcinoma cells. Biomedicine & Pharmacotherapy. 2021 Jul 1; 139:111707. DOI: 10.1016/j.biopha.2021.111707

Article Statistics :Views : 97 | Downloads : 65 : 11