Association of Obesity with Premenopausal Breast Cancer: Analyzing Molecular Subtypes Obesity and metabolic markers in BC
Abstract
Background: Breast cancer (BC) is a common disease among women. Research on obesity and premenopausal breast cancer shows mixed results. In this study, we examined the associations between premenopausal BC and obesity by analyzing molecular subtypes.
Methods: We interviewed 74 women diagnosed with early and advanced stages of BC. Interleukin-6 (IL-6), cancer antigen 15-3 (CA15-3), and insulin levels were determined by immunoassay. Biochemical analyses were used to measure serum levels of glucose and lipid profiles. Descriptive statistics, χ² test, t test, and analysis of variance were used for statistical analysis.
Results: Our results suggested that obesity was associated with tumor proliferation, size, and status of progesterone hormone receptors. Differences in lipid profiles were observed between patients with and without obesity, as well as between molecular subtypes. An increase in the levels of IL-6, glucose, and the Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) index was observed in luminal B and HER2-enriched subtypes in patients with obesity. In patients with triple-negative breast cancer (TNBC), only the glucose level was significantly associated with obesity. A moderate inverse correlation was found between the CA15-3 level and body mass index (r = −0.40, P = 0.008.
Conclusion: Our findings support the putative role of obesity BC development and the formation of its molecular subtypes in premenopausal women. Metabolic monitoring, especially of glucose and lipid profiles, proved to be useful for premenopausal patients with BC and obesity to evaluate potential risks for specific molecular subtypes.
Full text article
References
Mohanty SS, Mohanty PK. Obesity as potential breast cancer risk factor for postmenopausal women. Genes Dis. 2021;8(2):117-23. doi: 10.1016/j.gendis.2019.09.006.
Minatoya M, Kutomi G, Asakura S, Otokozawa S, Sugiyama Y, Ohnishi H, et al. Relationship of serum isoflavone, insulin and adiponectin levels with breast cancer risk. Breast Cancer. 2015;22(5):452-61. doi: 10.1007/s12282-013-0502-2.
Minatoya M, Kutomi G, Shima H, Asakura S, Otokozawa S, Ohnishi H, et al. Relation of serum adiponectin levels and obesity with breast cancer: a Japanese case-control study. Asian Pac J Cancer Prev. 2014;15(19):8325-30. doi: 10.7314/apjcp.2014.15.19.8325.
Urbute A, Frederiksen K, Kjaer SK. Early adulthood overweight and obesity and risk of premenopausal ovarian cancer, and premenopausal breast cancer including receptor status: prospective cohort study of nearly 500,000 Danish women. Ann Epidemiol. 2022;70:61-7. doi: 10.1016/j.annepidem.2022.03.013.
Mair KM, Gaw R, MacLean MR. Obesity, estrogens and adipose tissue dysfunction - implications for pulmonary arterial hypertension. Pulm Circ. 2020;10(3):2045894020952019. doi: 10.1177/2045894020952023.
Kachhawa P, Kachhawa K, Agrawal D, Sinha V, Sarkar PD, Kumar S. Association of Dyslipidemia, Increased Insulin Resistance, and Serum CA15-3 with Increased Risk of Breast Cancer in Urban Areas of North and Central India. J Midlife Health. 2018;9(2):85-91. doi: 10.4103/jmh.JMH_77_17.
Szablewski L. Insulin Resistance: The Increased Risk of Cancers. Curr Oncol. 2024;31(2):998-1027. doi: 10.3390/curroncol31020075.
Orgel E, Mittelman SD. The links between insulin resistance, diabetes, and cancer. Curr Diab Rep. 2013;13(2):213-22. doi: 10.1007/s11892-012-0356-6
Amadou A, Hainaut P, Romieu I. Role of obesity in the risk of breast cancer: lessons from anthropometry. J Oncol. 2013;2013:906495. doi: 10.1155/2013/906495.
Bononi G, Masoni S, Di Bussolo V, Tuccinardi T, Granchi C, Minutolo F. Historical perspective of tumor glycolysis: A century with Otto Warburg. Semin Cancer Biol. 2022;86(Pt 2):325-33. doi: 10.1016/j.semcancer.2022.07.003.
Hasan N, Yazdanpanah O, Khaleghi B, Benjamin DJ, Kalebasty AR. The role of dietary sugars in cancer risk: A comprehensive review of current evidence. Cancer Treatment and Research Communications. 2024;43:100876. doi: 10.1016/j.ctarc.2025.100876.
Gonullu G, Ersoy C, Ersoy A, Evrensel T, Basturk B, Kurt E, et al. Relation between insulin resistance and serum concentrations of IL-6 and TNF-alpha in overweight or obese women with early stage breast cancer. Cytokine. 2005;31(4):264-9. doi: 10.1016/j.cyto.2005.05.003.
Timper K, Denson JL, Steculorum SM, Heilinger C, Engström-Ruud L, Wunderlich CM, et al. IL-6 Improves Energy and Glucose Homeostasis in Obesity via Enhanced Central IL-6 trans-Signaling. Cell Rep. 2017;19(2):267-80. doi: 10.1016/j.celrep.2017.03.043.
Chen J, Wei Y, Yang W, Huang Q, Chen Y, Zeng K, et al. IL-6: The Link Between Inflammation, Immunity and Breast Cancer. Front Oncol. 2022;12:903800. doi: 10.3389/fonc.2022.903800.
Ravishankaran P, Karunanithi R. Clinical significance of preoperative serum interleukin-6 and C-reactive protein level in breast cancer patients. World J Surg Oncol. 2011;9:18. doi: 10.1186/1477-7819-9-18.
Mirzaeva M, Iriskulov B, Alimkhodjaeva L. Potential of Serum IL-6 as a Predictor of Tumоr Histоlоgiсаl Mаnifеstаtiоns in Prеmеnораusаl Brеаst Cаnсеr with Mеtаbоliс Sуndrоmе: IL6 as a tumor predictor. Archives of Breast Cancer. 2024;11(4). doi: 10.32768/abc.2024114337-344.
Nelson ER, Chang CY, McDonnell DP. Cholesterol and breast cancer pathophysiology. Trends Endocrinol Metab. 2014;25(12):649-55. doi: 10.1016/j.tem.2014.10.001.
Park JW, Han K, Shin DW, Yeo Y, Chang JW, Yoo JE, et al. Obesity and breast cancer risk for pre- and postmenopausal women among over 6 million Korean women. Breast Cancer Res Treat. 2021;185(2):495-506. doi: 10.1007/s10549-020-05952-4.
Li M, Song L, Yuan J, Zhang D, Zhang C, Liu Y, et al. Association Between Serum Insulin and C-Peptide Levels and Breast Cancer: An Updated Systematic Review and Meta-Analysis. Front Oncol. 2020;10:553332. doi: 10.3389/fonc.2020.553332.
Dai X, Li T, Bai Z, Yang Y, Liu X, Zhan J, et al. Breast cancer intrinsic subtype classification, clinical use and future trends. Am J Cancer Res. 2015;5(10):2929-43.
Liu K, Zhang W, Dai Z, Wang M, Tian T, Liu X, et al. Association between body mass index and breast cancer risk: evidence based on a dose-response meta-analysis. Cancer Manag Res. 2018;10:143-51. doi: 10.2147/cmar.S144619.
Mezghani N, Ammar A, Boukhris O, Abid R, Hadadi A, Alzahrani TM, et al. The Impact of Exercise Training Intensity on Physiological Adaptations and Insulin Resistance in Women with Abdominal Obesity. Healthcare (Basel). 2022;10(12). doi: 10.3390/healthcare10122533.
Chan DS, Norat T. Obesity and breast cancer: not only a risk factor of the disease. Curr Treat Options Oncol. 2015;16(5):22. doi: 10.1007/s11864-015-0341-9.
Pan K, Chlebowski RT, Mortimer JE, Gunter MJ, Rohan T, Vitolins MZ, et al. Insulin resistance and breast cancer incidence and mortality in postmenopausal women in the Women's Health Initiative. Cancer. 2020;126(16):3638-47. doi: 10.1002/cncr.33002.
Devic S. Warburg Effect - a Consequence or the Cause of Carcinogenesis? J Cancer. 2016;7(7):817-22. doi: 10.7150/jca.14274.
Yee LD, Mortimer JE, Natarajan R, Dietze EC, Seewaldt VL. Metabolic Health, Insulin, and Breast Cancer: Why Oncologists Should Care About Insulin. Front Endocrinol (Lausanne). 2020;11:58. doi: 10.3389/fendo.2020.00058.
Ryu JM, Kang D, Cho J, Lee JE, Kim SW, Nam SJ, et al. Prognostic Impact of Elevation of Cancer Antigen 15-3 (CA15-3) in Patients With Early Breast Cancer With Normal Serum CA15-3 Level. J Breast Cancer. 2023;26(2):126-35. doi: 10.4048/jbc.2023.26.e17.
Harris HR, Willett WC, Terry KL, Michels KB. Body fat distribution and risk of premenopausal breast cancer in the Nurses' Health Study II. J Natl Cancer Inst. 2011;103(3):273-8. doi: 10.1093/jnci/djq500.
Bjelland EK, Hofvind S, Byberg L, Eskild A. The relation of age at menarche with age at natural menopause: a population study of 336 788 women in Norway. Hum Reprod. 2018;33(6):1149-57. doi: 10.1093/humrep/dey078.
Xu S, Murtagh S, Han Y, Wan F, Toriola AT. Breast Cancer Incidence Among US Women Aged 20 to 49 Years by Race, Stage, and Hormone Receptor Status. JAMA Netw Open. 2024;7(1):e2353331. doi: 10.1001/jamanetworkopen.2023.53331.
Cattie R, Chung V, Henry M, Alberti M, Peeples J, Yuan H, et al. Obesity and breast cancer in women under age 40. 2023;41(16_suppl):10536-. doi: 10.1200/JCO.2023.41.16_suppl.10536.
Schoemaker MJ, Nichols HB, Wright LB, Brook MN, Jones ME, O'Brien KM, et al. Association of Body Mass Index and Age With Subsequent Breast Cancer Risk in Premenopausal Women. JAMA Oncol. 2018;4(11):e181771. doi: 10.1001/jamaoncol.2018.1771.
Torres-de la Roche LA, Steljes I, Janni W, Friedl TWP, De Wilde RL. The Association between Obesity and Premenopausal Breast Cancer According to Intrinsic Subtypes - a Systematic Review. Geburtshilfe Frauenheilkd. 2020;80(6):601-10. doi: 10.1055/a-1170-5004.
Daling JR, Malone KE, Doody DR, Johnson LG, Gralow JR, Porter PL. Relation of body mass index to tumor markers and survival among young women with invasive ductal breast carcinoma. Cancer. 2001;92(4):720-9. doi: 10.1002/1097-0142(20010815)92:4<720::aid-cncr1375>3.0.co;2-t.
Proskuriakova E, Aryal BB, Shrestha DB, Valencia S, Kovalenko I, Adams M, et al. Impact of Obesity on Breast Cancer Clinicopathological Characteristics in Underserved US Community Safety-Net Hospital: A Retrospective Single-Center Study. Clinical Breast Cancer. 2024;24(8):e714-e22. doi: 10.1016/j.clbc.2024.08.008.
Yang XR, Chang-Claude J, Goode EL, Couch FJ, Nevanlinna H, Milne RL, et al. Associations of breast cancer risk factors with tumor subtypes: a pooled analysis from the Breast Cancer Association Consortium studies. J Natl Cancer Inst. 2011;103(3):250-63. doi: 10.1093/jnci/djq526
Nouri M, Mohsenpour MA, Katsiki N, Ghobadi S, Jafari A, Faghih S, et al. Effect of Serum Lipid Profile on the Risk of Breast Cancer: Systematic Review and Meta-Analysis of 1,628,871 Women. J Clin Med. 2022;11(15). doi: 10.3390/jcm11154503.
Gupta A, Saraiya V, Deveaux A, Oyekunle T, Jackson KD, Salako O, et al. Association of lipid profile biomarkers with breast cancer by molecular subtype: analysis of the MEND study. Sci Rep. 2022;12(1):10631. doi: 10.1038/s41598-022-13740-x.
Asrorov AM, Gu Z, Li F, Liu L, Huang Y. Biomimetic camouflage delivery strategies for cancer therapy. Nanoscale. 2021;13(19):8693-706. doi: 10.1039/d1nr01127h.
Brody TOM. 6 - LIPIDS. In: Brody TOM, editor. Nutritional Biochemistry (Second Edition). San Diego: Academic Press; 1999. p. 311-78.
Dong S, Yu J, Chen X, Shen K. Association of serum lipid levels and clinical outcomes in early breast cancer patients. Ther Adv Med Oncol. 2023;15:17588359231177004. doi: 10.1177/17588359231177004
Li X, Liu ZL, Wu YT, Wu H, Dai W, Arshad B, et al. Status of lipid and lipoprotein in female breast cancer patients at initial diagnosis and during chemotherapy. Lipids Health Dis. 2018;17(1):91. doi: 10.1186/s12944-018-0745-1.
Bicakli DH, Varol U, Degirmenci M, Tunali D, Cakar B, Durusoy R, et al. Adjuvant chemotherapy may contribute to an increased risk for metabolic syndrome in patients with breast cancer. J Oncol Pharm Pract. 2016;22(1):46-53. doi: 10.1177/1078155214551315.
Shen J, Hernandez D, Ye Y, Wu X, Chow WH, Zhao H. Metabolic hormones and breast cancer risk among Mexican American Women in the Mano a Mano Cohort Study. Sci Rep. 2019;9(1):9989. doi: 10.1038/s41598-019-46429-9.
Pan K, Chlebowski RT, Mortimer JE, Gunther MJ, Rohan T, Vitolins MZ, et al. Insulin resistance and breast cancer incidence and mortality in postmenopausal women in the Women’s Health Initiative. 2020;126(16):3638-47. doi: 10.1002/cncr.33002.
Goodwin PJ, Ennis M, PriTCard KI, Trudeau ME, Koo J, Madarnas Y, et al. Fasting Insulin and Outcome in Early-Stage Breast Cancer: Results of a Prospective Cohort Study. 2002;20(1):42-51. doi: 10.1200/jco.2002.20.1.42.
Monteiro M, Zhang X, Yee D. Insulin promotes growth in breast cancer cells through the type I IGF receptor in insulin receptor deficient cells. Exp Cell Res. 2024;434(1):113862. doi: 10.1016/j.yexcr.2023.113862.
Epner M, Yang P, Wagner RW, Cohen L. Understanding the Link between Sugar and Cancer: An Examination of the Preclinical and Clinical Evidence. Cancers (Basel). 2022;14(24). doi: 10.3390/cancers14246042.
Chazelas E, Srour B, Desmetz E, Kesse-Guyot E, Julia C, Deschamps V, et al. Sugary drink consumption and risk of cancer: results from NutriNet-Santé prospective cohort. Bmj. 2019;366:l2408. doi: 10.1136/bmj.l2408.
Potischman N, Coates RJ, Swanson CA, Carroll RJ, Daling JR, Brogan DR, et al. Increased risk of early-stage breast cancer related to consumption of sweet foods among women less than age 45 in the United States. Cancer Causes Control. 2002;13(10):937-46. doi: 10.1023/a:1021919416101.
Mink PJ, Shahar E, Rosamond WD, Alberg AJ, Folsom AR. Serum Insulin and Glucose Levels and Breast Cancer Incidence: The Atherosclerosis Risk in Communities Study. Am J Epidemiol. 2002;156(4):349-52. doi: 10.1093/aje/kwf050.
Strober JW, Brady MJ. Dietary Fructose Consumption and Triple-Negative Breast Cancer Incidence. Front Endocrinol (Lausanne). 2019;10:367. doi: 10.3389/fendo.2019.00367.
Noman AS, Uddin M, Chowdhury AA, Nayeem MJ, Raihan Z, Rashid MI, et al. Serum sonic hedgehog (SHH) and interleukin-(IL-6) as dual prognostic biomarkers in progressive metastatic breast cancer. Scientific Reports. 2017;7(1):1796. doi: 10.1038/s41598-017-01268-4.
Bachelot T, Ray-Coquard I, Menetrier-Caux C, Rastkha M, Duc A, Blay JY. Prognostic value of serum levels of interleukin 6 and of serum and plasma levels of vascular endothelial growth factor in hormone-refractory metastatic breast cancer patients. Br J Cancer. 2003;88(11):1721-6. doi: 10.1038/sj.bjc.6600956.
Bun A, Nagahashi M, Kuroiwa M, Komatsu M, Miyoshi Y. Baseline interleukin-6 is a prognostic factor for patients with metastatic breast cancer treated with eribulin. Breast Cancer Research and Treatment. 2023;202(3):575-83. doi: 10.1007/s10549-023-07086-9.
Salgado R, Junius S, Benoy I, Van Dam P, Vermeulen P, Van Marck E, et al. Circulating interleukin-6 predicts survival in patients with metastatic breast cancer. Int J Cancer. 2003;103(5):642-6. doi: 10.1002/ijc.10833.
Milovanović J, Todorović-Raković N, Radulovic M. Interleukin-6 and interleukin-8 serum levels in prognosis of hormone-dependent breast cancer. Cytokine. 2019;118:93-8. doi: 10.1016/j.cyto.2018.02.019.
Ravishankaran P, Karunanithi R. Clinical significance of preoperative serum interleukin-6 and C-reactive protein level in breast cancer patients. World Journal of Surgical Oncology. 2011;9(1):18. doi: 10.1186/1477-7819-9-18.
Hasan D. Diagnostic impact of CEA and CA15-3 on chemotherapy monitoring of breast cancer patients. J Circ Biomark. 2022;11:57-63. doi: 10.33393/jcb.2022.2446.
Darlix A, Lamy PJ, Lopez-Crapez E, Braccini AL, Firmin N, Romieu G, et al. Serum HER2 extra-cellular domain, S100ß and CA15-3 levels are independent prognostic factors in metastatic breast cancer patients. BMC Cancer. 2016;16:428. doi: 10.1186/s12885-016-2448-1.
De Cock L, Heylen J, Wildiers A, Punie K, Smeets A, Weltens C, et al. Detection of secondary metastatic breast cancer by measurement of plasma CA15-3. ESMO Open. 2021;6(4). doi: 10.1016/j.esmoop.2021.100203.
Di Gioia D, Dresse M, Mayr D, Nagel D, Heinemann V, Stieber P. Serum HER2 in combination with CA15-3 as a parameter for prognosis in patients with early breast cancer. Clin Chim Acta. 2015;440:16-22. doi: 10.1016/j.cca.2014.11.001.
Santillán-Benítez JG, Mendieta-Zerón H, Gómez-Oliván LM, Torres-Juárez JJ, González-Bañales JM, Hernández-Peña LV, et al. The tetrad BMI, leptin, leptin/adiponectin (L/A) ratio and CA15-3 are reliable biomarkers of breast cancer. J Clin Lab Anal. 2013;27(1):12-20. doi: 10.1002/jcla.21555.
Provatopoulou X, Georgiou GP, Kalogera E, Kalles V, Matiatou MA, Papapanagiotou I, et al. Serum irisin levels are lower in patients with breast cancer: association with disease diagnosis and tumor characteristics. BMC Cancer. 2015;15:898. doi: 10.1186/s12885-015-1898-1.
Grubb RL, 3rd, Black A, Izmirlian G, Hickey TP, Pinsky PF, Mabie JE, et al. Serum prostate-specific antigen hemodilution among obese men undergoing screening in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. Cancer Epidemiol Biomarkers Prev. 2009;18(3):748-51. doi: 10.1158/1055-9965.Epi-08-0938.
Menikdiwela KR, Kahathuduwa C, Bolner ML, Rahman RL, Moustaid-Moussa N. Association between Obesity, Race or Ethnicity, and Luminal Subtypes of Breast Cancer. Biomedicines. 2022;10(11). doi: 10.3390/biomedicines10112931.
Sahin S, Erdem GU, Karatas F, Aytekin A, Sever AR, Ozisik Y, et al. The association between body mass index and immunohistochemical subtypes in breast cancer. Breast. 2017;32:227-36. doi: 10.1016/j.breast.2016.09.019.
Govind Babu K, Anand A, Lakshmaiah KC, Lokanatha D, Jacob LA, Suresh Babu MC, et al. Correlation of BMI with breast cancer subtype and tumour size. Ecancermedicalscience. 2018;12:845. doi: 10.3332/ecancer.2018.845.
Authors
Copyright (c) 2025 Archives of Breast Cancer

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright©. This is an open-access article distributed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 International License, which permits copy and redistribution of the material in any medium or format or adapt, remix, transform, and build upon the material for any purpose, except for commercial purposes.