Antiviral Drug 2-thio-6-azauridine Sensitizes Paclitaxel-Resistant Triple Negative Breast Cancer Cells by Targeting Mammosphere Formation and ABC Transporters

Rakshmitha Marni (1), Murali Mohan Gavara (2), Anindita Chakraborty (3), RamaRao Malla (4)
(1) Cancer Biology Lab, Department of Biochemistry and Bioinformatics, Institute of Science, GITAM, Visakhapatnam, India, India,
(2) Cancer Biology Lab, Department of Biochemistry and Bioinformatics, Institute of Science, GITAM, Visakhapatnam, India, India,
(3) bRadiation Biology, UGC-DAE-CSR, Kolkata Centre, Kolkata, India, India,
(4) Cancer Biology Lab, Department of Biochemistry and Bioinformatics, Institute of Science, GITAM, Visakhapatnam, India, India

Abstract

Background: 2-thio-6-azauridine (TAU) is a nucleoside analog and potential antiviral drug. The antiproliferative activity of TAU has been evaluated in limited cancer cell lines. The present study is aimed to evaluate the effect of TAU on drug sensitization mechanism in paclitaxel (PTX) resistant triple-negative breast cancer (TNBC) cells.
Methods: The cell death mechanism was determined using MTT, BrdU incorporation, apoptosis, and DNA damage Western blot and RT-PCR assays. A specific ELISA method was used to determine the caspase-3 activity and expression levels of MRP1, MDR1, BCRP, and MRP8. Western blot analysis was used to assess the expression of CD151, MRP1, MDR1, and BCRP in CD151 overexpressing PTX-resistant TNBC cells.
Results: The combination of TAU and PTX (10:20nM) synergistically inhibited the 50% viability of 12-fold PTX-resistant TNBC cells. Mechanistically, the combination inhibited the proliferation by arresting the cell cycle at the G2M phase and induced apoptosis by altering cell integrity and nuclear morphology as well as damaging DNA. The combination sensitized the PTX-resistant TNBC cells by increasing BAX and decreasing Bcl-2 expression, activating caspase-3, and reducing the expression of ABC transporters MRP1 and MDR1. The combination reduced the expression of MRP1 and MDR1 in CD151 overexpressing PTX-resistant TNBC cells, indicating the role of CD151in TAU mediated sensitization of PTX-resistant TNBC cells. The combination also reduced the mammosphere formation efficiency of PTX-resistant TNBC cells.
Conclusion: Overall, the present study illustrated the promising ability of TAU in sensitizing drug-resistant TNBC cells to PTX.

Full text article

Generated from XML file

References

Wahba HA, El-Hadaad HA. Current approaches in treatment of triple-negative breast cancer. Cancer biology & medicine. 2015;12(2):106-16. doi: 10.7497/j.issn.2095-3941.2015.0030.

Kucuk O, Pandya KJ, Skeel RT, Hochster H, Abeloff MD. Phase II study of cisplatin and 5-fluorouracil in previously treated metastatic breast cancer: an Eastern Cooperative Oncology Group study (PA 185). Breast cancer research and treatment. 1999;57(2):201-6. doi: 10.1023/a:1006229701954.

Zajdel A, Nycz J, Wilczok A. Lapatinib enhances paclitaxel toxicity in MCF-7, T47D, and MDA-MB-321 breast cancer cells. Toxicology in vitro : an international journal published in association with BIBRA. 2021;75:105200. doi: 10.1016/j.tiv.2021.105200.

Zhong P, Chen X, Guo R, Chen X, Chen Z, Wei C, et al. Folic Acid-Modified Nanoerythrocyte for Codelivery of Paclitaxel and Tariquidar to Overcome Breast Cancer Multidrug Resistance. Molecular pharmaceutics. 2020;17(4):1114-26. doi: 10.1021/acs.molpharmaceut.9b01148.

Thakur V, Kutty RV. Recent advances in nanotheranostics for triple negative breast cancer treatment. Journal of Experimental & Clinical Cancer Research. 2019;38(1):430. doi: 10.1186/s13046-019-1443-1.

Michelle Xu M, Pu Y, Weichselbaum RR, Fu YX. Integrating conventional and antibody-based targeted anticancer treatment into immunotherapy. Oncogene. 2017;36(5):585-92. doi: 10.1038/onc.2016.231.

Di L, Liu LJ, Yan YM, Fu R, Li Y, Xu Y, et al. Discovery of a natural small-molecule compound that suppresses tumor EMT, stemness and metastasis by inhibiting TGFbeta/BMP signaling in triple-negative breast cancer. Journal of experimental & clinical cancer research : CR. 2019;38(1):134. doi: 10.1186/s13046-019-1130-2.

Morrey JD, Smee DF, Sidwell RW, Tseng C. Identification of active antiviral compounds against a New York isolate of West Nile virus. Antiviral research. 2002;55(1):107-16. doi: 10.1016/s0166-3542(02)00013-x.

Li LH, Neil GL, Moxley TE, Olin EJ. Antitumor activity and mode of action of 2-thio-6-azauridine (NSC-146268) on L1210 leukemia. Cancer chemotherapy reports. 1974;58(3):345-52. doi: Not Available.

Loret EP, Darque A, Jouve E, Loret EA, Nicolino-Brunet C, Morange S, et al. Erratum to: Intradermal injection of a Tat Oyi-based therapeutic HIV vaccine reduces of 1.5 log copies/mL the HIV RNA rebound median and no HIV DNA rebound following cART interruption in a phase I/II randomized controlled clinical trial. Retrovirology. 2016;13(1):35. doi: 10.1186/s12977-016-0264-y.

Gavara MM, Zaveri K, Badana AK, Gugalavath S, Amajala KC, Patnala K, et al. A novel small molecule inhibitor of CD151 inhibits proliferation of metastatic triple negative breast cancer cell lines. Process biochemistry. 2018;66:254-62. doi: 10.1016/j.procbio.2017.12.004.

Kgk D, Kumari S, G S, Malla RR. Marine natural compound cyclo(L-leucyl-L-prolyl) peptide inhibits migration of triple negative breast cancer cells by disrupting interaction of CD151 and EGFR signaling. Chemico-biological interactions. 2019;315:108872. doi: 10.1016/j.cbi.2019.108872.

Foucquier J, Guedj M. Analysis of drug combinations: current methodological landscape. Pharmacology research & perspectives. 2015;3(3): e00149. doi: 10.1002/prp2.149.

Badana AK, Chintala M, Gavara MM, Naik S, Kumari S, Kappala VR, et al. Lipid rafts disruption induces apoptosis by attenuating expression of LRP6 and survivin in triple negative breast cancer. Biomed Pharmacother. 2018;97:359-68. doi: 10.1016/j.biopha.2017.10.045.

Badana A, Chintala M, Varikuti G, Pudi N, Kumari S, Kappala VR, et al. Lipid Raft Integrity Is Required for Survival of Triple Negative Breast Cancer Cells. Journal of breast cancer. 2016;19(4):372-84. doi: 10.4048/jbc.2016.19.4.372.

Kumari S, Mohan MG, Shailender G, Badana AK, Malla RR. Synergistic enhancement of apoptosis by coralyne and paclitaxel in combination on MDA-MB-231 a triple-negative breast cancer cell line. Journal of cellular biochemistry. 2019;120(10): 18104-16. doi: 10.1002/jcb.29114.

Liu K, Liu PC, Liu R, Wu X. Dual AO/EB staining to detect apoptosis in osteosarcoma cells compared with flow cytometry. Medical science monitor basic research. 2015;21:15-20. doi: 10.12659/msmbr.893327.

Garrity MM, Burgart LJ, Riehle DL, Hill EM, Sebo TJ, Witzig T. Identifying and quantifying apoptosis: navigating technical pitfalls. Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc. 2003;16(4):389-94. doi: 10.1097/01.mp.0000062657.30170.92.

Kumar AD, Bevara GB, Kaja LK, Badana AK, Malla RR. Protective effect of 3-O-methyl quercetin and kaempferol from Semecarpus anacardium against H2O2 induced cytotoxicity in lung and liver cells. BMC complementary and alternative medicine. 2016;16(1):376. doi: 10.1186/s12906-016-1354-z.

Malla RR, Gopinath S, Alapati K, Gorantla B, Gondi CS, Rao JS. uPAR and cathepsin B inhibition enhanced radiation-induced apoptosis in gliomainitiating cells. Neuro-oncology. 2012;14(6):745-60. doi: doi.org/10.1093/neuonc/nos088.

Malla R, Gopinath S, Alapati K, Gondi CS, Gujrati M, Dinh DH, et al. Downregulation of uPAR and cathepsin B induces apoptosis via regulation of Bcl-2 and Bax and inhibition of the PI3K/Akt pathway in gliomas. PloS one. 2010;5(10):e13731. doi: 10.1371/journal.pone.0013731.

Bevara GB, Naveen Kumar AD, Koteshwaramma KL, Badana A, Kumari S, Malla RR. C-glycosyl flavone from Urginea indica inhibits proliferation & angiogenesis & induces apoptosis via cyclin-dependent kinase 6 in human breast, hepatic & colon cancer cell lines. The Indian journal of medical research. 2018;147(2):158-68. doi: 10.4103/ijmr.IJMR_51_16.

Assanga I, Lujan L. Cell growth curves for different cell lines and their relationship with biological activities. International Journal of Biotechnology and Molecular Biology Research. 2013;4(4):60-70. doi: Not Available

Shebaby W, Abdalla EK, Saad F, Faour WH. Data on isolating mesenchymal stromal cells from human adipose tissue using a collagenase-free method. Data in brief. 2016;6:974-9. doi: 10.1016/j.dib.2016.02.002.

Lovitt CJ, Shelper TB, Avery VM. Doxorubicin resistance in breast cancer cells is mediated by extracellular matrix proteins. BMC Cancer. 2018;18(1):41. doi: 10.1186/s12885-017-3953-6.

Mills CC, Kolb EA, Sampson VB. Recent Advances of Cell-Cycle Inhibitor Therapies for Pediatric Cancer. Cancer research. 2017;77(23):6489-98. doi: 10.1158/0008-5472.can-17-2066.

Alfarouk KO, Stock CM, Taylor S, Walsh M, Muddathir AK, Verduzco D, et al. Resistance to cancer chemotherapy: failure in drug response from ADME to P-gp. Cancer cell international. 2015;15:71. doi: 10.1186/s12935-015-0221-1.

Yamada A, Ishikawa T, Ota I, Kimura M, Shimizu D, Tanabe M, et al. High expression of ATP-binding cassette transporter ABCC11 in breast tumors is associated with aggressive subtypes and low disease-free survival. Breast cancer research and treatment. 2013;137(3):773-82. doi: 10.1007/s10549-012-2398-5.

Bilici A, Arslan C, Altundag K. Promising therapeutic options in triple-negative breast cancer. Journal of BUON: official journal of the Balkan Union of Oncology. 2012;17(2):209-22. doi: Not Available.

Isakoff SJ. Triple-negative breast cancer: role of specific chemotherapy agents. Cancer journal (Sudbury, Mass). 2010;16(1):53-61. doi: 10.1097/PPO.0b013e3181d24ff7.

Lai H, Wang R, Li S, Shi Q, Cai Z, Li Y, et al. LIN9 confers paclitaxel resistance in triple negative breast cancer cells by upregulating CCSAP. Science China Life sciences. 2019. doi: 10.1007/s11427-019-9581-8.

Sprouse AA, Herbert BS. Resveratrol augments paclitaxel treatment in MDA-MB-231 and paclitaxel-resistant MDA-MB-231 breast cancer cells. Anticancer research. 2014;34(10):5363-74. doi: Not Available.

Ferlini C, Cicchillitti L, Raspaglio G, Bartollino S, Cimitan S, Bertucci C, et al. Paclitaxel directly binds to Bcl-2 and functionally mimics activity of Nur77. Cancer research. 2009;69(17):6906-14. doi: 10.1158/0008-5472.can-09-0540.

Torrisi R, Balduzzi A, Ghisini R, Rocca A, Bottiglieri L, Giovanardi F, et al. Tailored preoperative treatment of locally advanced triple negative (hormone receptor negative and HER2 negative) breast cancer with epirubicin, cisplatin, and infusional fluorouracil followed by weekly paclitaxel. Cancer chemotherapy and pharmacology. 2008;62(4):667-72. doi: 10.1007/s00280-007-0652-z.

Kaye S, Brown R, Gabra H, Gore M. Emerging therapeutic targets in ovarian cancer: Springer; 2011.

Burande AS, Viswanadh MK, Jha A, Mehata AK, Shaik A, Agrawal N, et al. EGFR Targeted Paclitaxel and Piperine Co-loaded Liposomes for the Treatment of Triple Negative Breast Cancer. AAPS PharmSciTech. 2020;21(5):151. doi: 10.1208/s12249-020-01671-7.

Schmid P, Rugo HS, Adams S, Schneeweiss A, Barrios CH, Iwata H, et al. Atezolizumab plus nab-paclitaxel as first-line treatment for unresectable, locally advanced or metastatic triple-negative breast cancer (IMpassion130): updated efficacy results from a randomised, double-blind, placebo-controlled, phase 3 trial. The Lancet Oncology. 2020;21(1):44-59. doi: 10.1016/s1470-2045(19)30689-8.

Kang C, Syed YY. Atezolizumab (in Combination with Nab-Paclitaxel): A Review in Advanced Triple-Negative Breast Cancer. Drugs. 2020;80(6):601-7. doi: 10.1007/s40265-020-01295-y.

Hsu MY, Hsieh CH, Huang YT, Chu SY, Chen CM, Lee WJ, et al. Enhanced Paclitaxel Efficacy to Suppress Triple-Negative Breast Cancer Progression Using Metronomic Chemotherapy with a Controlled Release System of Electrospun Poly-d-l-Lactide-Co-Glycolide (PLGA) Nanofibers. Cancers. 2021;13 (13). doi: 10.3390/cancers13133350.

Davoodi P, Ng WC, Srinivasan MP, Wang CH. Codelivery of anti-cancer agents via double-walled polymeric microparticles/injectable hydrogel: A promising approach for treatment of triple negative breast cancer. Biotechnology and bioengineering. 2017;114(12):2931-46. doi: 10.1002/bit.26406.

Reguera-Nuñez E, Xu P, Chow A, Man S, Hilberg F, Kerbel RS. Therapeutic impact of Nintedanib with paclitaxel and/or a PD-L1 antibody in preclinical models of orthotopic primary or metastatic triple negative breast cancer. Journal of Experimental & Clinical Cancer Research. 2019;38(1):16. doi: 10.1186/s13046-018-0999-5.

Lee H, Jeon J, Ryu YS, Jeong JE, Shin S, Zhang T, et al. Disruption of microtubules sensitizes the DNA damage-induced apoptosis through inhibiting nuclear factor kappaB (NF-kappaB) DNA-binding activity. Journal of Korean medical science. 2010;25(11):1574-81. doi: 10.3346/jkms.2010.25.11.1574.

Woods D, Turchi JJ. Chemotherapy induced DNA damage response: convergence of drugs and pathways. Cancer biology & therapy. 2013;14(5):379-89. doi: 10.4161/cbt.23761.

Dickson MA, Schwartz GK. Development of cell-cycle inhibitors for cancer therapy. Current oncology (Toronto, Ont). 2009;16(2):36-43. doi: 10.3747/co.v16i2.428.

Maire V, Nemati F, Richardson M, Vincent-Salomon A, Tesson B, Rigaill G, et al. Polo-like kinase 1: a potential therapeutic option in combination with conventional chemotherapy for the management of patients with triple-negative breast cancer. Cancer research. 2013;73(2):813-23. doi: 10.1158/0008-5472.can-12-2633.

Luengo-Gil G, Gonzalez-Billalabeitia E, Chaves-Benito A, Garcia Martinez E, Garcia Garre E, Vicente V, et al. Effects of conventional neoadjuvant chemotherapy for breast cancer on tumor angiogenesis. Breast cancer research and treatment. 2015;151(3):577-87. doi: 10.1007/s10549-015-3421-4.

Yadav BS, Sharma SC, Chanana P, Jhamb S. Systemic treatment strategies for triple-negative breast cancer. World journal of clinical oncology. 2014;5(2):125-33. doi: 10.5306/wjco.v5.i2.125.

McDermott M, Eustace AJ, Busschots S, Breen L, Crown J, Clynes M, et al. In vitro Development of Chemotherapy and Targeted Therapy Drug-Resistant Cancer Cell Lines: A Practical Guide with Case Studies. Frontiers in oncology. 2014;4:40. doi: 10.3389/fonc.2014.00040.

Kumari S, Badana AK, Mohan GM, Shailender Naik G, Malla R. Synergistic effects of coralyne and paclitaxel on cell migration and proliferation of breast cancer cells lines. Biomed Pharmacother. 2017;91:436-45. doi: 10.1016/j.biopha.2017.04.027.

Gopinath S, Malla RR, Gondi CS, Alapati K, Fassett D, Klopfenstein JD, et al. Co-depletion of cathepsin B and uPAR induces G0/G1 arrest in glioma via FOXO3a mediated p27 upregulation. PloS one. 2010;5(7):e11668. doi: 10.1371/journal.pone.0011668.

Zhang Y, Chen X, Gueydan C, Han J. Plasma membrane changes during programmed cell deaths. Cell research. 2018;28(1):9-21. doi: 10.1038/cr.2017.133.

Malla RR, Gopinath S, Gondi CS, Alapati K, Dinh DH, Tsung AJ, et al. uPAR and cathepsin B downregulation induces apoptosis by targeting calcineurin A to BAD via Bcl-2 in glioma. Journal of neuro-oncology. 2012;107(1):69-80. doi: 10.1007/s11060-011-0727-x.

Williams MM, Cook RS. Bcl-2 family proteins in breast development and cancer: could Mcl-1 targeting overcome therapeutic resistance? Oncotarget. 2015;6(6):3519-30. doi: 10.18632/oncotarget.2792.

Ruvolo PP, Deng X, May WS. Phosphorylation of Bcl2 and regulation of apoptosis. Leukemia. 2001;15(4):515-22. doi: 10.1038/sj.leu.2402090.

Erdogan S, Doganlar O, Doganlar ZB, Turkekul K. Naringin sensitizes human prostate cancer cells to paclitaxel therapy. Prostate international. 2018;6(4):126-35. doi: 10.1016/j.prnil.2017.11.001.

Serru V, Le Naour F, Billard M, Azorsa DO, Lanza F, Boucheix C, et al. Selective tetraspan-integrin complexes (CD81/alpha4beta1, CD151/alpha3beta1, CD151/alpha6beta1) under conditions disrupting tetraspan interactions. The Biochemical journal. 1999;340 ( Pt 1):103-11. doi: Not Available.

Yang X, Li S, Zhong J, Zhang W, Hua X, Li B, et al. CD151 mediates netrin-1-induced angiogenesis through the Src-FAK-Paxillin pathway. Journal of cellular and molecular medicine. 2017;21(1):72-80. doi: 10.1111/jcmm.12939.

Ke AW, Zhang PF, Shen YH, Gao PT, Dong ZR, Zhang C, et al. Generation and characterization of a tetraspanin CD151/integrin alpha6beta1-binding domain competitively binding monoclonal antibody for inhibition of tumor progression in HCC. Oncotarget. 2016;7(5):6314-22. doi: 10.18632/oncotarget.6833.

Hemler ME. Targeting of tetraspanin proteins--potential benefits and strategies. Nature reviews Drug discovery. 2008;7(9):747-58. doi: 10.1038/nrd2659.

Bonnet M, Maisonial-Besset A, Zhu Y, Witkowski T, Roche G, Boucheix C. Targeting the Tetraspanins with Monoclonal Antibodies in Oncology: Focus on Tspan8/Co-029. 2019;11(2). doi: 10.3390/cancers11020179.

Tilghman J, Schiapparelli P, Lal B, Ying M, Quinones-Hinojosa A, Xia S, et al. Regulation of Glioblastoma Tumor-Propagating Cells by the Integrin Partner Tetraspanin CD151. Neoplasia (New York, NY). 2016;18(3):185-98. doi: 10.1016/j.neo.2016.02.003.

Hwang S, Takimoto T, Hemler ME. Integrin-independent support of cancer drug resistance by tetraspanin CD151. 2019;76(8):1595-604. doi: 10.1007/s00018-019-03014-7.

Mudvari P, Ohshiro K, Nair V, Horvath A, Kumar R. Genomic insights into triple-negative and HER2-positive breast cancers using isogenic model systems. PloS one. 2013;8(9):e74993. doi: 10.1371/journal.pone.0074993.

Zhang S, Zhang H, Ghia EM, Huang J, Wu L, Zhang J, et al. Inhibition of chemotherapy resistant breast cancer stem cells by a ROR1 specific antibody. Proc Natl Acad Sci U S A. 2019;116(4):1370-7. doi: 10.1073/pnas.1816262116.

Das S, Mukherjee P, Chatterjee R, Jamal Z, Chatterji U. Enhancing Chemosensitivity of Breast Cancer Stem Cells by Downregulating SOX2 and ABCG2 Using Wedelolactone-encapsulated Nanoparticles. Mol Cancer Ther. 2019;18(3):680-92. doi: 10.1158/1535-7163.Mct-18-0409.

Authors

Rakshmitha Marni
Murali Mohan Gavara
Anindita Chakraborty
RamaRao Malla
dr.rrmalla@gmail.com (Primary Contact)
1.
Rakshmitha Marni, Murali Mohan Gavara, Anindita Chakraborty, Malla R. Antiviral Drug 2-thio-6-azauridine Sensitizes Paclitaxel-Resistant Triple Negative Breast Cancer Cells by Targeting Mammosphere Formation and ABC Transporters. Arch Breast Cancer [Internet]. 2022 Jan. 23 [cited 2024 Sep. 18];9(1):50-65. Available from: https://archbreastcancer.com/index.php/abc/article/view/446

Article Details