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Background: In the 21st century, the main cause of death in both sexes 
worldwide is cardiovascular disease, followed by neoplasms. In women, the main 
cause of morbidity and mortality is breast cancer. Therefore, understanding the 
immunological mechanisms associated breast cancer and its correlation with poor 
prognosis is very important. 

Methods: In this study, a search was done on PubMed and Google Scholar, using 
the following medical subject headings (MeSH) in the search engine: “triple negative 
breast cancer”, “breast cancer microenvironment”, “immune cells”, “prognosis”, 
“regulatory t reg”, “T cells” and “tumor-associated neutrophils”. Thus, a total of 81 
articles were found and reviewed, published between 2002 and 2023. 

Results and conclusions: It is essential to understand the immunological 
mechanisms associated with the tumor microenvironment, to create new targeted 
treatment schemes for each variant of breast cancer, for example triple negative in 
order to reduce the mortality rate and increase disease-free survival.  

Copyright © 2024. This is an open-access article distributed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 International License, which permits 
copy and redistribution of the material in any medium or format or adapt, remix, transform, and build upon the material for any purpose, except for commercial purposes. 

 
INTRODUCTION 
Breast cancer (BC) is the most common cancer in 

women worldwide, affecting approximately 11.6% 
during their lifetimes, with a prevalence of 30.3% and 
a mortality of 18.4% in 2018, in all ages, in the 
world.1 This type of cancer has been divided into 
different classifications depending on histological, 
molecular, immunological2,3, and genetic 
characteristics. One of the most important 

classifications is based on the presence of hormonal 
receptors, such as estrogen and progesterone 
receptors, and human epidermal growth factor 
receptor 2 (HER2) expression, defined as 3+ protein 
expression by immunohistochemistry (IHC) and/or 
HER2/neu gene amplification greater than or equal to 
2.0 by fluorescence in situ hybridization (FISH). The 
absence of hormone receptor expression (defined by 
a percentage ≤1% of estrogen and progesterone 
receptors by IHC) and HER2 negatively (0 to 1+ 
determined by IHC or lack of gene amplification 
(FISH <2.0)) is known as Triple-Negative Breast 
Cancer (TNBC).2,3 TNBC is the most aggressive 
subtype of breast cancer, accounting for 
approximately 12-20% of all breast cancer cases; 
however, TNBC is now classified depending on its 
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molecular characteristics. This molecular 
subclassification subdivides it into six subtypes: 
basal-like 1 (BL1), basal-like 2 (BL2), 
immunomodulatory (IM), mesenchymal (M), 
mesenchymal stem-like (MSL), and luminal 
androgen receptor (LAR) subtype.4 Although this 
classification is of great clinical importance in the 
subdivision of TNBC, in this review those subtypes 
with better prognosis (as some metaplastic 
carcinomas) will not be considered, and the TNBC 
will be considered as a bad prognosis in general. 

The tumor microenvironment (TME) refers to the 
interaction between tumor cells, immune cells, 
stromal cells, extracellular matrix (ECM), and other 
non-cancerous cells. TNBC cells interact with the 
TME to survive and grow.5 The most important 
microenvironment cell components are 
immunological cells, which include regulatory T 
cells, tumor-associated macrophages (TAMs), tumor-
associated neutrophils (TANs), B cells, and plasma 
cells; stromal cells, such as cancer-associated 
fibroblasts (CAFs), and cancer-associated adipocytes 
(CAAs); and the extracellular matrix.6 The interaction 
between BC cells and their TME provides them with 
unique characteristics, including resistance to cell 
death, deregulation of cellular metabolism, sustaining 
proliferative signaling, evading growth suppressors, 
avoiding immune destruction, enabling replicative 
immortality, unlocking phenotypic plasticity, and 
senescence, which are known as “hallmarks of 
cancer”. 7 

The traditional treatment guidelines are based on 
surgery and postoperative adjuvant chemotherapy in 
early-stage TNBC; however, if the patient has 
inoperable locally advanced BC, the neoadjuvant 
chemotherapy is a major part of treatment to reduce 
the tumor size and, if possible, a breast-conserving 
surgery. In metastatic and recurrent TNBC, the 
systemic therapy is the main component of TNBC 
treatment, which includes immunotherapy and 
targeted therapies. Currently, research into the tumor 
microenvironment and its function in cancer 
pathogenesis is still ongoing to create new TNBC 
therapeutic strategies.  

This paper mainly introduces the immune cells 
and related factors in the TNBC microenvironment, 
discusses the current TNBC treatment, and 
summarizes the characteristics of the TNBC 
microenvironment and its role in prognosis, in order 
to: (I) understand the immunological components of 
the TNBC microenvironment; (II) summarize the 
current therapeutic strategies of TNBC; and (III) 
introduce the consequences of TNBC 
microenvironment after using different systemic 
therapies. 

In the present study, a search was performed on 
PubMed and Google Scholar platforms, using the 
following medical subject headings (MeSH) in the 
search engine: “triple negative breast cancer”, “breast 
cancer microenvironment”, “immune cells”, 
“prognosis”, “regulatory t lymphocytes”, “T cells” 
and “tumor-associated neutrophils”. A total of 100 
articles published between 2002 and 2023 were found 
and reviewed. 

 
TNBC microenvironment 
Most tumors, such as BC, are highly 

immunogenic; therefore, their TME has a high 
concentration of infiltrating immune cells, but most 
of them, are inhibitory immune populations, 
including regulatory T cells, and myeloid-derived 
immunosuppressive cells (MDSCs), such as TAMs, 
TANs, and CAFs.6 The microenvironment has high 
levels of PD-1 and PDL-1. The most frequent 
inflammatory cells are CD163+ histiocytes, CD3+ T 
lymphocytes, CD68+ histiocytes, cytotoxic CD8+ T 
lymphocytes, CD4+ cells, and CD20+ B 
lymphocytes.8,9 

BC can manipulate immune defenses via intrinsic 
and extrinsic pathways. The immune system 
efficiently recognizes tumor cells by presenting BC 
antigens to T cells, which can expand and become 
effector-specific T cells.10 There are two immune 
checkpoints that can upregulate or downregulate the 
immune stimulation: cytotoxic T lymphocyte antigen 
4 (CTLA-4), a co-inhibitory molecule on T cells that 
inhibits cells activation by ligation with CD86 and 
CD80; programmed death 1 (PD-1) is another 
immune checkpoint, that can be inhibited by 
programmed death ligand 1 (PD-L1) expressed in 
tumor cells.11,12 TNBC has the strongest tumor 
immunogenicity of all BC subtypes.13 Liu et al. 
demonstrated this by analyzing the high expression 
levels of immune-related genes in their inflammatory 
infiltrates.14 High PD-L1 expression has a worse 
clinical outcome in BC, but high levels of PD-L1 are 
necessary for immunotherapy by the immune 
checkpoint inhibitors.15,16 

 
Tumor-infiltrating lymphocytes (TILs) 
Tumor-infiltrating lymphocytes (TILs) comprise a 

mixture of B lymphocytes, cytotoxic T lymphocytes 
(CTLs), CD4 T cells, NK cells, and plasma cells. 
TILs are the immunological anti-tumor response and 
are associated with prognosis in BC.6,17 CTLs are the 
first line of adaptive anti-tumor response and can be 
recognized as positive CD2, CD3, CD5, CD7, and 
CD8 by IHC. They recognize and kill neoplastic cells 
through cell cycle inhibition, apoptosis induction, and 
activation of macrophage.6,18,19 CTLs are activated by 
the interaction with activated CD4+ T lymphocytes, 
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promoting antitumor activity, but if the immune 
reaction and the interleukins secretion of BC leads to 
an immunosuppressive state, the CD4+ T 
lymphocytes will transform into T reg cells, 
inhibiting the antitumor CD8+ response.12,20,21 
Immune cells can contribute by homing to distant 
organs to establish pre-metastatic niches.22,23 

T regs (CD4+ and CD25+ by IHC) are key 
mediators of immunotolerance, which suppress 
CD8+ T cell functions, promote tumor invasion and 
metastasis by downregulating the host immune 
response, and promote active secretion of chemokines 
through the C-C chemokine receptor type 5 (CCR5)-
associated and CCR5 axis. They promote immune 
escape by expressing T cell markers, such as IFNγ, 
PD-L1, and FOXP3+. 24–26 In addition, the high 
concentrations of interleukins promote tumor 
growth.24,27,28  

High levels of TILs are associated with the best 
prognosis by increasing the tumor response to 
neoadjuvant chemotherapy and anthracycline-based 
chemotherapy. He et al. concluded found that each 
10% increment of TILs and high-level TILs (≥50%) 
in BC predicts improved overall survival (OS) and 
pathological complete response (pCR), specifically in 
the HER-2 overexpression and TNBC.29–31 In one 
meta-analysis that included 2,987 patients with early-
stage BC over a median follow-up of 113 months, it 
was found that TILs were associated with a reduction 
in recurrence, and death. 32 MDSCs such as TAMs are 
implicated in the induction of CTL tolerance. 33 In 
addition, an increase in TILs was associated with 
longer overall survival in TNBC but not in HER2+ 
and luminal BC. 34 

Natural killer (NK) cells (CD56+) are part of the 
native immune system and can induce tumor cell 
death. When activated by the contact with tumor cells, 
they can release perforins and granzymes, inducing 
cell apoptosis. 35 TILs have prognostic utility in early 
stage, but they can be useful as a prognostic marker 
during neoadjuvant treatment because they have been 
associated with higher rates of pCR. In addition, the 
presence of TILs in residual disease at the time of 
surgery in patients with TNBC after neoadjuvant 
chemotherapy indicates a favorable prognosis. 36 

After antigenic exposure, B cells can be 
differentiated into plasma cells that express CD38 by 
IHC as characteristic cell surface markers (CD138+ 
has been proposed to be another characteristic plasma 
cell surface marker, but it can be expressed in many 
cancers, such as BC) 37,38, with the capacity of 
antibody secretion. 39,40 It has been proven that these 
types of cells can contribute to BC tumorigenesis. In 
one study, they demonstrated that intratumorally 
CD38+ plasma cell density was an independent 
prognostic marker, and the higher expression of IgG 

genes also predicted better outcome in TNBC. 8,39,41–

44 The relationship between better prognosis and high 
levels of CD38+ plasma cells infiltrating TNBC may 
be related to antigen spreading, complement-
dependent cytotoxicity, and antibody-dependent 
cellular cytotoxicity. 45,46 

In summary, multiple authors conclude that the 
high levels of intratumorally CD8+ T cells, NK cells, 
and CD20+ B cells represent better prognosis than 
low levels of these immune cells, as shown in Figure 
1. 20,47–49 
 

Myeloid-derived immunosuppressive cells 
(MDSCs) 

• Tumor-associated macrophages (TAMs) 
One of the most studied immune cell populations 

is TAMs. 60 These immune cells come from blood 
circulating monocytes that migrate to the BC niche 
due to an antitumor response and are then transformed 
into activated macrophages. Previously, macrophages 
were divided into two subtypes (M1 and M2) 
depending on the type of interleukins predominance 
(pro-inflammatory or anti-inflammatory, 
respectively). 60,61 Currently, this classification does 
not allow all the subgrouping of macrophages, 
especially TAMs, but TAMs share characteristics 
similar to M2 macrophages (M2-type genes, such as 
CD276, CD163, MS4A6A, and TGFβ1). 62–65 In order 
to discriminate these new macrophage populations, 
Eleanor et al. performed a systematic review of trials 
from 1900 to 2020 reporting OS or progression-free 
survival (PFS), TAM phenotype, and density. They 
included 22 studies with 8446 patients, concluding 
that CD163+ TAMs which express similar phenotype 
to M2 macrophages are a better predictor of poor 
survival outcomes in BC. 60 In addition, these immune 
cells express PD-L1 and PD-L2 for 
immunoregulation 66–68, and they can induce PD-L1 
expression by secreting IFN-γ and activating the 
JAK/STAT signaling pathway in TNBC. 74,75 

• Tumor-associated neutrophils (TANs) 
Neutrophils are myeloid cells that play multiple 

roles; however, the most important is to protect 
against microorganisms. 76 Currently, there is 
evidence that neutrophils play a role in the intratumor 
microenvironment in BC because they have been 
immersed in the inflammatory infiltrate. 22 TANs 
express several immunosuppressive pathways, 
including STAT3, TGFβ, and ROS. In addition, 
accumulation of immunosuppressive TANs is 
associated with acquired immune checkpoint 
blockade (ICB). 77 TANs can be divided into 
circulating neutrophils and tumor-infiltrating 
neutrophils (TINs), the latter of which are closely 
related to BC cells. TINs induce migration, invasion, 
and epithelial to mesenchymal transition (EMT) of 
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BC. 78 As macrophages, TANs can be polarized 
depending on the predominance of inflammatory 
interleukins and their function in N1 (anti-tumor) and 
N2 (pro-tumor). 79 Neutrophil polarization and 

neutrophil extracellular trap (NET) secretion 
contribute to pre-metastatic niche formation as shown 
in Figure 2. 69 

 
Figure 1. The TNBC Microenvironment. Several immunological characteristics are associated with tumorigenesis. 1) 
Fibroblast recruitment and activation may lead to CAFs, which can induce ECM remodeling, 2) Cancer cells transform into 
mesenchymal-like cells with the capacity to migrate, 3) Angiogenesis by the active secretion of VEGF by cancer cells, 4) 
Immune evasion by the creation of an immunosuppressive state. TNBC (Triple-Negative Breast Cancer); CAFs (Cancer-
Associated Fibroblasts); ECM (Extracellular Matrix); EMT (Epithelial to Mesenchymal Transition); VEGF (Vascular 
Endothelial Growth Factor); TGFβ (Transforming Growth Factor Betha); TNFα (Tumor Necrosis Factor α); M-CSF 
(Macrophage Colony-Stimulating Factor); IL (Interleukin). 8–12,14–16,20–31,33,35,36,39,41–73 Created with Biorender.com 

 
• Cancer-associated fibroblasts (CAFs) 

CAFs (defined as positive vimentin and α-smooth 
muscle actin (αSMA) by IHC 80) play an important 
role in the BC microenvironment. They participate in 
the regulation of cancer cell proliferation and 
invasion by promoting neoangiogenesis and 
extracellular matrix (ECM) remodeling. 81 However, 
Costa et al. discovered the existence of four 
subgroups of CAFs depending on their molecular 
profile and immunological activity. They identified 
that CAF-S1 was associated with an 
immunosuppressive state by increasing the survival 
of CD4+ CD25+ T lymphocytes, and promoting 
differentiation of CD25+ FOXP3+ cells, known 
classically as T reg cells, through B7H3, CD73, and 
DPP4. 81–85 The importance of CAFs can be used as a 
prognostic marker post-neoadjuvant chemotherapy 
and immunotherapy, as can be seen in the mouse 
model reported by Takai et al. 70 

• Cancer-associated adipocytes (CAAs). 
Adipose cells in the microenvironment of 

mammary glands are composed of adipocytes and 
adipose-derived stem cells (ADSCs). They are known 
as CAAs when they are adjacent to BC cells. 72 CAAs 
are aberrant adipocytes that exhibit an aberrant 
phenotype, a decrease in late adipocyte differentiation 
markers, and overexpression of inflammatory 
cytokines and proteases. They mediate a complex 
crosstalk network between adipocytes and BC cells, 
which plays a role in the growth of cancer cells by 
inducing lipolysis, creating a rich free fatty acid 
environment, and promoting their proliferation, 
viability, migration, and invasion by secreting 
paracrine adipokines, including leptin, adiponectin, 
IL-6, and C-C motif chemokine ligand 2/5 (CCL2, 
and CCL5). In addition, cancer cells can regulate the 
ECM remodeling by secreting pro-inflammatory 
interleukins, such as interleukin-6 (IL-6) that 
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activates β catenin signaling pathway in adipocytes to 
form fibroblasts 71–73 However, the highly complex 
interactions between CAAs and BC cells are not yet 

fully understood. Table 1 summarizes the 
immunological cells associated with TNBC. 

 

 
Figure 2. TNBC microenvironment and its mechanisms of invasion and metastasis. 1) Cancer cell migration and invasion 
through the interaction between tumor cells and tumor microenvironment cells, 2) Immune cell evasion, 3) Extravasation 
through the blood-brain barrier and other organs by the interaction with endothelial receptors, 4) At this time, in distant 
organs, there are immune cells influenced by interleukins secreted by tumor cells and the interaction with the extracellular 
matrix making a premetastatic niche, necessary for cancer cells, 5) Immunosuppressive state is necessary for the survival of 
malignant cells. CAFs (Cancer-Associated Fibroblasts); TAM (Tumor-Associated Macrophages); TAN (Tumor-Associated 
Neutrophils); PD-1 (Programmed Death-1); PD-L1 (Programmed Death Ligand-1); MHC-I (Major Histocompatibility 
Complex-I); TCR (T Cell Receptor); IFN (Interferon); TGFβ (Transforming Growth Factor Betha). 8–12,14–16,20–31,33,35,36,39,41–

73 Created with Biorender.com 
 

Table 1. Characteristics of the immunosuppressive state in the TNBC microenvironment 
Microenvironment 
components 

Mechanism of pathogenesis Effect on 
Prognosis 

References 

Breast cancer cells Secretion of interleukins, invasion, and 
angiogenesis. 

Negative. (8,9,14–16,50,52) 

CD4+ T lymphocytes Inducing antitumor response. Positive. (6,12,18–21) 

CD8+ T/NK 
lymphocytes. 

Promoting cancer cell death by inducing 
apoptosis signaling pathways. 

Positive. (35,53) 

T reg lymphocytes. Creating an immunosuppressive state by 
secreting anti-inflammatory interleukins, 
such as IL-10 and TGF-β. 

Negative. (24,27,28) 

CD20+ B/CD38+ 
plasma cells 

Antigen spreading, complement-dependent 
cytotoxicity, and antibody-dependent cellular 
cytotoxicity.  

Positive. (45,46,59) 

Tumor-associated 
macrophages. 

Creating an immunosuppressive state by 
secreting anti-inflammatory interleukins, 
such as IL-10 and TGF-β. 

Negative. (60,61,66–68,75) 

Tumor-associated 
neutrophils. 

Neutrophil polarization and NET secretion 
contributing to pre-metastatic niche 
formation. 

Negative. (69,76–79) 

Cancer-associated 
fibroblasts. 

ECM remodeling and angiogenesis. Negative. (70,81–85) 

Cancer-associated 
adipocytes. 

Release of free fatty acids, which are used by 
cancer cells. 

Negative. (71–73) 
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Endothelial cells 
Endothelial cells are an important component of 

the TME, which can regulate the adhesion of tumor 
cells and their invasion into the endothelial 
monolayer. Vascular endothelial growth factor 
(VEGF) is the most important pro-angiogenic factor 
and is actively secreted by TNBC cells, promoting its 
growth and invasion. In addition, TNBC cells 
produce plasminogen activator inhibitor-1 (PAI-1) 
and stimulate the secretion of chemokines, such as 
CCL5, which interact with other TNBC cells to 
enhance their migration, invasion, and metastasis. 86  

 
Extracellular matrix (ECM) 
The ECM is a complex network of different 

proteins whose composition and functions are 
necessary for the maintenance of breast tissue and 
TME homeostasis. 87 There are three subtypes of 
proteins that make up the ECM: structural proteins, 
such as collagen and elastin, whose function is to 
provide tissue strength and resilience; specialized 
glycoproteins, such as fibronectin, whose function is 
to regulate the ECM-cell adhesion; and 
proteoglycans, which control the passage of many 
growth factors and cytokines. 88 TNBC has more 
fibroblasts, which are necessary for ECM 
remodeling. ECM rigidity contributes to 
mechanosignaling, vascular distribution, and pro-
tumorigenic immune infiltration. In addition, many 
ECM proteins are deregulated in TNBC, which 
promote invasion and metastasis 89; however, further 
investigations are necessary to clarify their role in 
TNBC pathogenesis. 

 
Recent advances in immune targeted therapy in 

patients with TNBC 
The traditional treatment guidelines are based on 

surgery and postoperative adjuvant chemotherapy in 
early-stage BC; however, if the patient has inoperable 
locally advanced BC, the neoadjuvant chemotherapy 
is considered as the main component of treatment 
guidelines to reduce the tumor size and, if possible, a 
breast-conserving surgery. Systemic chemotherapy, 
in addition to immune checkpoint inhibitors and poly 
(ADP-ribose) polymerase (PARP) inhibitors, is 
considered in metastatic BC; however, it could be 
administered in early-stage TNBC as adjuvant and 
neoadjuvant therapy. 90  

TNBC cells express PD-L1 on their membrane 
surfaces, and the interaction of CTLA-4 with T cell 
membrane surfaces results in T cell anergy. These 
two immune checkpoints are important for an 
effective immune response. There are two types of 
immune checkpoint inhibitors, PD-1 inhibitors 
(pembrolizumab) and CTLA-4 antibody inhibitors 
(ipilimumab). The inhibition of these two immune 

checkpoints helps the immune system to recognize 
cancer cells by suppressing the TNBC immune 
evasion system. 91 In 2021, the United States Food 
and Drug Administration (FDA) approved 
pembrolizumab in combination with chemotherapy as 
neoadjuvant therapy for locally recurrent 
unresectable and metastatic TNBC that expressing 
PD-L1 with a combined positive score (CPS) ≥10, 
which is defined as the number of PD-L1-stained cells 
(tumor cells, lymphocytes, macrophages) divided by 
the total number of viable tumor cells, multiplied by 
100. 92 

PARP inhibitors are the first clinically approved 
drugs that show promising activity in patients with 
BC affected by harmful mutations in breast cancer 
susceptibility genes 1 or 2 (BRCA1/2), which are key 
components in the homologous recombination repair 
(HRR) pathway. The mechanism of action of PARP 
inhibitors is the competing binding of PARP1 and 
PARP2 catalytic domains, which displaces 
nicotinamide adenine ribonucleotide (NAD+) from 
its active site, thus preventing the recruitment of 
single-strand DNA repair effectors. 93 

Nowadays, these new treatment strategies are 
considered the backbone of systemic therapy as 
neoadjuvant therapy in early-stage and advanced 
TNBC in contrast with alternative neoadjuvant 
therapies because they confer benefits in response and 
survival outcomes. 94  

 
Antitumor therapies induce TME remodeling 
As mentioned above, the conventional treatment 

for TNBC is a combination of immune checkpoint 
inhibitors and chemotherapy. It is currently known 
that anticancer therapies play an important role in the 
TME remodeling. Chemotherapy induces abnormal 
blood vessels that lead to high interstitial pressure and 
poor blood perfusion in tumor tissues. 95 In one study, 
they characterized the TME post-treatment of patients 
with non-small-cell lung cancer (NSCLC) who 
received neoadjuvant PD-1 blockade with 
chemotherapy. They demonstrated that TME was 
completely different between pre. and post-
neoadjuvant treatment. The post-neoadjuvant TME 
had more CTLs and NK cells, reduced 
immunosuppressive T regs, and expanded TAMs 
with anti-tumor phenotype. 96 

Radiotherapy as a therapeutic modality in BC is 
associated with high levels of immune infiltration 
because tumor cell death releases an increased 
concentration of damage-associated molecular 
patterns (DAMPs), which include ATP, calreticulin, 
heat shock protein, and high mobility group box 1 
(HMGB1). 97 These DAMPs activate toll-like 
receptors on the dendritic cell membrane surface, 
leading to CTL activation. In addition, radiation 
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activates the cyclic GMP-AMP synthase (cGAS)-
stimulator of interferon genes (STING) pathway, 
which results in an increased secretion of type I 
interferons (IFN), leading to the infiltration of CD8+ 
and CD4+ T cells and migration of MDSCs. 98 On the 
other hand, radiotherapy induces senescence-like 
fibroblasts that favor tumor growth. CAFs secrete a 
high concentration of CXCL12, whose function is 
tumor cell stemness and radiotherapy resistance. 99 In 
addition, radiation induces endothelial cell damage, 
which, despite increasing hypoxia and therefore 
cancer cell death, also induces NF-kB activity, 
resulting in IL-6, CCL1, and CCL5 production, which 
attracts T reg lymphocytes and promotes a pro-tumor 
microenvironment. 99 

As with radiotherapy, chemotherapy is another 
therapeutic modality in BC that increases the 
concentration of DAMPs by tumor cell death. Even 
though high TIL concentrations are associated with 
better prognosis, it has been shown that post-
treatment TIL concentrations decrease considerably 
due to lymphodepletion secondary to chemotherapy. 
100 Chemotherapy transforms fibroblasts into CAF-
like senescent phenotype, which have pro-tumor 
effects by secreting growth factors. 100 In addition, 
chemotherapy induces IL-6 and TNF-α secretion by 
dysfunctional endothelial cells, promoting a 
proinflammatory environment. 100 

 
CONCLUSION 
Breast cancer is the most common type of cancer 

in women worldwide. Triple-negative breast cancer is 

the most aggressive subtype of this type of cancer 
because it has the strongest tumor immunogenicity of 
all BC subtypes and represents between 12% and 20% 
of all breast cancer cases. Therefore, over time, new 
research questions have arisen to better understand 
the TNBC physiopathogenesis and, in this way, create 
new treatment strategies. 

This article aimed to analyze, through an 
exhaustive review of the literature, the 
immunopathological mechanisms associated with the 
TME reported by various authors over time and its 
relationship with a worse or better prognosis of this 
type of cancer. The intratumor microenvironment in 
TNBC is a complex mechanism that ranges from any 
type of cell in the white series to adipose cells. 
Understanding the TME in TNBC will allow health 
professionals to establish appropriate treatment and 
prognosis lines for this type of cancer according to its 
different immunopathological characteristics, with 
the aim of reducing mortality in women with TNBC 
and increasing the survival rate. 
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