

DOI: 10.19187/abc.20163234-40

The Effects of Naringenin on Some Human Breast Cancer Cells: A Systematic Review

Zahra Akbarzadeh^{a, b}, Farnaz Parvaresh^{a, b}, Reza Ghiasvand^{a, b}, Maryam Miraghajani*^c

^a Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran

 $^{"}$ Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran

 \degree Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran

ARTICLE INFO

Received: 5 March 2016 Revised: 16 March 2016 Accepted: 16 May 2016

ABSTRACT

Background: Breast cancer is the most common cancer in women worldwide. Recently, natural remedies such as Naringenin (Nar) - a kind of flavonoids which can be found in grapefruits, oranges, and tomatoes - seem to be interesting. They play a useful role in treatment and chemoprevention because of having pleiotropic molecular mechanisms of action on breast cancer cells.

Methods: We performed a PRISMA-directed systematic review to investigate the effects of Naringenin on some human breast cancer cells (MCF-7, T47D, and MDA-MB-231). Tumor size, apoptosis, estrogenic properties, and cytotoxicity were assessed as primary outcomes. The systematic search without restriction was conducted in electronic databases, including PubMed, Scopus, Google scholar, and Cochrane Library.

Results: Initially, 6445 articles were identified. After screening their titles and abstracts, 32 studies were selected for text appraisal. Finally, 6 articles which met the inclusion criteria were evaluated. Based on the evaluation, Nar could inhibit both cell proliferation and tumor growth at different concentration. Moreover, it could induce apoptosis.

Conclusions: Due to anticancer properties of Nar, some probable mechanisms of these effects are induction of alteration in aromatase and caspase enzymes, and suppression of oestrogen signal transduction pathways. However, more investigations are necessary in the future to decide whether Nar consumption is recommendable as part of breast cancer treatment and control. Also, some clinical trials should be designed to determine the optimal dose for the therapeutic use.

Introduction

Breast cancer is the most common cancer in women worldwide and accounts for nearly 20% of the new cancer diagnosed cases.^{1,2} As about 14% of

Address for correspondence: Maryam Miraghajani, PhD Address: Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran Tel: +98 31 36688487 Fax: +98 31 36682509 Email: ms.miraghajani@yahoo.com the total deaths are related to this cancer, it threatens the physical and mental health of women throughout the world.^{3,4}

Recently, natural remedies are being widely used and accepted as established treatments for some disorders.⁵ Indeed, the continuing worldwide effort is to discover new anticancer agents from medicinal plants. Some researchers have concluded that natural products are protective factors against breast cancer cells.^{6, 7} Among them, dietary components such as flavonoids are generally known to have potential protective roles against cancers. Beside the effectiveness of these ingredients in the reduction of malignancy risk and treatment, they have a much wider safety margin than do some drugs.⁸

Naringenin (Nar) belongs to the flavanone family, which is found abundantly in grapefruit juice, citrus fruits, and tomato skin.⁹ This flavone possesses diverse biologic effects such as anti-carcinogenic, anti-inflammatory, and anti-oxidant activities.¹⁰ Also, this phytochemical appears to have antiproliferative effects in many cancer cell lines, especially breast cancer cells.^{11, 12} This food component exhibits anti-estrogen effects in estrogen rich states, and estrogenic activity in reduced estrogen states in breast cancer cells. Since more than 60% of breast cancers are estrogen receptor positive (ER+), (a polymorphism in the human estrogen receptor gene that is sensitive to estrogen and may respond to hormone therapy), and on the other hand Nar can inhibit proliferation via this pathway and reduce the number of estrogen receptors in positive cells, these compounds might play a useful role in breast cancer chemoprevention and treatment.¹³⁻¹⁶

However, the effectiveness of this dietary ingredient in breast cancer cells has not yet been reviewed. We conducted this systematic review to evaluate the effect of biologic activities of Nar on the tumor size, apoptosis (by assessment of caspase), estrogenic properties (by assessment of the activation of aromatase enzyme which is a key enzyme in the biosynthesis of steroids), and cytotoxicity (by MTT staining as described by Mosmann) among four types of main human breast cancer cells, including MCF-7, T47D, and MDA-MB-231.

Methods

This literature reviews was designed and presented in compliance with the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines.

Search strategy

The following databases were searched in June 2015: Scopus, Google Scholar, ProQuest, PubMed, and Cochrane Library. The search terms used were: "Naringenin 7-O-methyltransferase" [Mesh] OR "7-O-xylosyl Naringenin" [Mesh] OR "Naringenin" [tiabs] OR, "Isoflavone" [tiabs] OR "naringenin-7-O-glucoside" [TW], AND "breast cancer" [tiabs] OR "breast neoplasms" [tiabs] OR "breast tumors" [tiabs]. No restriction was applied.

Study inclusion and exclusion criteria

Two researchers independently rated each paper to conclude their inclusion eligibility using defined inclusion and exclusion criteria. The study was included if it had the following criteria: 1) reporting the association between Naringenin as an exposure and breast cancer cells; 2) considering the effect of Naringenin on tumor size, apoptosis (by assessment of caspase 9 or luciferase), estrogenic properties (by assessment of the activation of aromatase enzyme) and cytotoxicity (by MTT staining as described by Mosmann) as primary outcomes.

 (\cdot)

The exclusion criteria were animal studies and all other breast cancer cell researches which did not include MCF-7, T47D, and MDA-MB-231 cells.

Study selection

The selection process had three stages that were conducted by two authors independently. The first and the second stages included screening the titles and then abstracts, respectively. The final step was to screen the full text of the articles according to the inclusion criteria. A third author arbitrated any unresolved disagreements arising during any stage in the selection process. A PRISMA flow diagram (Figure 1) was used to report the number of studies that were included and excluded in each stage of the selection process.

Data extraction

The following information was extracted from each paper: the name of the first author, type of study, duration, sample size, dose of Naringenin, outcome, mechanism, P-value, and results.

Results

A total of 6445 studies were initially recognized in these databases: 154 in Scopus, 6220 in Google Scholar, 20 in ProQuest, 1 in Cochrane, and 50 in PubMed. After we excluded duplicate studies on the basis of title or abstract, 50 studies were retrieved for more investigation. Studies that were conducted on animal cells and not related to mentioned breast cancer cells were excluded. A total of 47 studies were intended for more assessment. After reading 47 full texts, 6 studies were eligible for inclusion.

Main study characteristics

In one study conducted by Kim et al., the T47D-KBluc and MDA-MB-231 human breast cancer cells were treated with Naringenin for 24 hours. Then, the effect of Naringenin on luciferase as a screen for estrogen receptor activity and pS2 protein expression which have a correlation with estrogen receptor positivity in both cells were measured. InT47D-KBluc cells, Naringenin increased the luciferase activity in a concentration-dependent manner, especially at 10µM, via an estrogen receptor-dependent mechanism. The highest significant effect of Nar on the expression pS2 mRNA in T47D-KBluc cells was at10µM. So, it was concluded that Nar could act as a new selective estrogen receptor modulator, with the ability to increase deficient estrogen activity while disrupting excessive estrogen activity (Table 1).¹⁷

In one study by Filho, the colony size and number,

Figure 1. Flow diagram of study selection

apoptotic gene activity, apoptosis, and proliferation of MDA-MB-231 tumor cells were defined after Nar administration. It was illustrated that the colony size in these cells treated with Nar was significantly decreased as compared with untreated cells. Naringenin was found to inhibit the proliferation of MDA-MB-231 cells at concentrations of 500 and 1000 mM. Also, 100 mM Nar could induce about 65% of apoptosis although 1 mM Nar made no significant difference in the expression of caspase 8 and 9 (as an initiator of apoptosis) (Table 1).¹⁸

In addition, the effect of exposing MCF-7, MDA-MB-231, and T47D human cancer cells to Nar (at $1 \times 10^{-9} \times 10^{-6} \mu$ M to $1 \times 10^{-4} \times 10^{-6} \mu$ M concentration) for 24 hours has been studied. According to the results, Nar decreases the number of MCF-7 and T47D breast cancer cells significantly at $1 \times 10^{-6} \times 10^{-6} \mu$ M concentration. Nar concentrations ranging from $1 \times 10^{-7} \times 10^{-6} \mu$ M to $1 \times 10^{-4} \times 10^{-6} \mu$ M reduce only MCF-7 and T47D cells numbers. No similar results have been obtained in MDA -MB-231 cells. In contrast to MDA -MB-231 cells, caspase-3 activation could be detected in both MCF-7 and T47D cells treated with Nar. Also, it has been found that Nar acts as

a selective inhibitor of ER α which mediates proliferation in breast cancer cells. Although Nar can modulate ER α signaling pathways, it could not modify the number of ER α among MDA-MB-231(ER α -)cells.¹⁹

Another study showed that the cytotoxicity effects of Nar were not different with flow cytometric analysis in both cell lines, MCF-7 as the ER positive (+) and MDA-MB-231 as the ER negative (-).²⁰

Van evaluated cell proliferation, aromatase inhibition, and estrogenic properties of Nar in MCF-7 adenocarcinoma cells. The proliferative potency of Nar in the MCF-7 cells derived from their EC50s (half maximal effective concentration) and IC50s (half maximal inhibitory concentration) were 287 and 315 nM, respectively. Aromatase activity was very low in MCF-7 cells. In this study, Nar could induce cell proliferation and inhibit aromatase in a concentration range of 1–10 μ M.²¹ Treatment with Nar (at a concentration $\geq 1 \mu$ M) after 6 days did not affect cell proliferation. Also, Nar did not show cytotoxic effects in the MCF-7 cells at estrogenic concentrations (<1×10[°]µM) but it could induce cell proliferation and significantly inhibit the aromatase activity. Estrogenic property of Nar is quantitatively more sensitive than aromatase inhibition. In contrast to other reports, this finding did not show the cytotoxic effects of Nar on MCF-7 cells.^{20,21}

In a study by Stapel J, although Naringenin could diminish the proliferation MCF-7 cells in a concentration range of 5 to 50 µg/ml, it had not cytotoxic effect by LDH- assay.22

6

Table 1. Details of studies investigated the association between Naringenin and some human breast cancer co	Table 1.	Details of studies	investigated the a	association between	Naringenin and s	some human bi	reast cancer cells
---	----------	--------------------	--------------------	---------------------	------------------	---------------	--------------------

Author (Year)	Type of Study	Duration	Sample size	Dose of Naringenin	Outcome	Mechanism	Results	P-value
Kim S ¹⁷ (2013)	Experimental	24 hours	l ×10 ^s T47D- Kbluc cells	Concentrations of (0.001,0.1, 1, and 10 µM) (to 1)	Nar on proliferative and	Nar acts by an estrogen receptor-dependent mech- anism in T47D-KBluc cells.	Naringenin was a weak estrogen agonist that exhibits anti-estrogenic effect in T47D-KBluc breast cancer cells. Nar significantly repressed the luciferase activity. it has no effect on cell proli- feration. Nar can modulate the transcription of *pS2 mRNA expression.	
Filho JCC (2014)	¹⁸ Experimental	measuring Cell proliferation	5×10 ⁴ cells/plate for measuring cell proliferation in MDA-MB- 231 cells. 0.1×10 ⁶ /plate for measuring apoptosis in MDA-MB-231 cells/	(1 to 1000 mM)	different concentrations of Nar on colony size, apoptotic activity, apop- tosis and proliferation of	Apoptosis was induced by Nar via activation of caspase-3 and -9 but not caspase-8 pathways. Higher concentration (1 mM) of Nar caused death via necrosis in this cell line.	Colony size significantly decreases. Nar can inhibit cell proliferation at concentrations of 500 and 1000 μ M. Higher concentration (1 mM) of Nar caused death via necrosis in this cell line and inducing apoptosis in MDA-MB-231 breast tumor cells.	
Bulzomi F (2012)	¹⁹ Experimental	48 hours	1×10 ⁻⁴ M Nar expose to carci- noma cell lines	T47D, and MDA-	growth, proliferation and the number of MCF7,	Nar impairs cell proli- feration by activating caspase-3 in MCF-7 and T47D cells, not in MDA- MB-231 cells.	Nar (at 1×10^{4} M) reduces number and inhibits growth and impairs proliferation in MCF-7 and T47D cells. Nar only decreases the number of Er α -positive cells (MCF-7 and T47D).	
Kanno S ²⁰ (2005)	Experimental	For determining cytotoxicity: 48 hours	For determining cytotoxicity 4×10^5 MCF7 and MDA - MB231 cells.	100, 250, 500 or 1000m M	Determining cytotoxicity (by MTT**) in MCF-7, MDA-MB-231cells.	The mechanism of cyto- toxicity which induced by Nar is independent of p53 and has not been cleared yet.	Nar induced cytotoxicity in both MCF-7, and MDA- MB-231 cells. The cyto- toxicity of Nar is not different in both of cells.	
Van Meeuwen ² (2007)	, Experimental	MCF-7 cells(by MTT**): 48h. For measure- ment aromatase	measurement in MCF-7 cells :1×10 ⁵ cells/well For measure- ment aromatase inhibitory in MCF-7 2×10 ⁵ cells/well (24	The best result was at concen- tration 287µM for	Nar expose to human epithelial estrogen sensi- tive breast tumor cells (MCF-7). Aromatase inhibition, cell proli- feration, cell cytotoxicity was measured		Nar at concentration range $(1-10 \mu M)$ can induce cell proliferation or inhibit aromatase. Estrogenicity of Nar is quantitatively more sensitive than aromatase inhibition. Cytotoxicity at concentration (>1×10 ³) were observed inMCF-7 cells. The potential of Nar for inhabitation tumor cells (by inhibit aromatase) are higher than proliferative potency	
Stapel J ²² (2013)	Experimental	For measuring MCF-7 cell pro- liferation: 24h.	For measure- ment cell proli- feration: 5×10 ^s cells/ml	5-50 µg/ml	The effect of Nar on cytotoxic potential and cell proliferation of MCF-7.	NR***	Nar was not cytotoxic (by LDH-assay). In the concen- tration 5 µg/ml Nar can inhibit cell proliferation.	P < 0.05

* pS2 expression was used as a measure for estrogenic response in MCF-7 cells ** MTT: 3-(4,5- dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide *** NR: Not reported

Discussion

Flavonoids, polyphenolic compounds, have a broad spectrum of biological activities, including anticancer properties. They have been proved to potentiate the effectiveness of existing drugs in cancer therapy.²³⁻²⁵

Therefore, in the present systematic review which is the first review in this field to our knowledge, we evaluated the results of 6 articles that assessed the effect of Nar on the tumor size, apoptosis, estrogenic properties, and cytotoxicity on some breast cancer cells.

In general, among these investigations, two and three studies revealed the beneficial effects of Nar on cell proliferation in MDA-MB-231 cells and inMCF-7 cells, respectively.^{7,9,10,18,19} Also, two studies showed that this flavanone could induce apoptosis in MDA-MB-231 and exert proapoptotic functions in MCF-7 and T47D cells.^{18, 19} Moreover, 2 studies revealed the antitumor function for Nar.^{18,21}

The cancer protective effects of NAR have been attributed to a wide variety of mechanisms.

The effects of Naringenin on estrogen receptor activity

Over 60% of breast cancers are estrogen receptor positive (ER+), which means they are sensitive to estrogen and may respond to hormone therapy.²⁶ Estrogen via receptors participates in signaling pathway leads to growth cells. Emerging evidence suggests flavonoids could have protective roles against tumors by modulating the activity of estrogen receptors α (ER α) and β (ER β) in some malignant cells.^{17,18,27} Nar exhibits anti-estrogenic properties in ER α + cells by modulating the signaling pathways through inducing specific shape changes in the receptor.¹⁹ Also, estrogen receptor dependent mechanisms in T47D cells can change the expression of pS2 as one of the estrogen target tumor suppressor genes.^{17,20}

Further, Naringenin might have anti-estrogenic activities in T47D cells through estrogen receptor modulation.¹⁷ Overall, the results showed that Naringenin is a weak estrogen that also exhibits partial antiestrogenic activities.^{28, 29} So, Nar is not an efficient antagonist for activating estrogen receptors but is a sectional agonist which can act as a competitive antagonist.¹⁷

The effects of Naringenin on aromatase activity

Aromatase is the key-limiting enzyme in production of estrogens and testosterone conversation to estrogens.³⁰

The activity of aromatase is higher in the breast cancer adipose tissue when compared with the healthy adipose tissue.³¹ In the breast tumor tissue, a promoter switching leads to elevated aromatase gene expression.³² So, the mechanisms modulating the tumor growth could be via interaction with the estrogen receptor and inhibition of aromatase.²¹ Some studies have reported that phytochemicals such as Nar act as aromatase inhibitors; thus, they could potentially reduce the tumor growth.^{21,33}

According to reports, phenolic hydroxyl group in position 7 of Nar is essential for the anti-aromatase activity.³³⁻³⁶

The effects of Naringenin on apoptosis

Caspases play an essential role in programmed cell death.³⁷ Cell proliferation could be inhibited by activating caspase-3 in MCF-7 and T47D cells.¹⁹

Previous studies have reported that genomic deletion of the caspase gene causes apoptotic defects and chemo-resistance in MCF-7 cells.^{38, 39} Naturally, flavonoids can trigger a novel form of apoptosis in caspase-3-deficient MCF-7 cells. Furthermore, Naringenin as a kind of flavonoid has the potential to initiate apoptosis by activation of caspase in the mentioned cells.⁴⁰

In addition, in some studies, luciferase genes are used as reporters to analyze the apoptosis level, and it has been shown that Nar significantly increases the luciferase activity in T47D-KBluc cells.¹⁹

Other potential mechanisms for the anti-cancer properties of Nar are interaction with cell cycle arrest, carcinogen pathway and the reversal of multidrug resistance.⁴¹ However, there are complex feedback mechanisms in living organisms because breast cancer tumors communicate with other tissues through prostaglandins, cytokines, and estradiol.²¹

Based on the results of several studies, some foods which are the source of Nar have other elements- such as CYP3A4 which is a member of the cytochrome P450 - that increase the plasma concentration of estrogen.^{21,42} So, it might be negatively affect the activity of Nar.

It is seems that food supplements containing Nar could be advised especially in patients who have a previous history of breast tumor or are high risk.²¹

Like all reviews, this study had some limitations. First, we assessed *in vitro* studies which pure Nar was generally used. Food sources of Nar differ from its purified extracts in their anticancer effects. Moreover, interactions among bioactive components in these foods are likely to affect their biological response. Moreover, Nar is in the glycosides form in the human intestine which can be deglycosylated by certain bacterial species.⁴³ So, a variety of certain bacterial species in the human intestine might have an impact on the favorable effects of Nar.

In conclusion, Naringenin as a kind of flavonoids is a bioactive molecule. Generally, Nar can exert anticancer effects via suppression of aromatase and caspase enzymes and oestrogen signal transduction pathways. More studies should be conducted using oral supplementation at different doses in different human populations to confirm the results.

Financial support

This study was supported by Isfahan University of Medical Sciences, Isfahan, Iran.

Conflict of interest

The authors declare that they have no conflicts of interest concerning this study.

References

1. Saslow D, Boetes C, Burke W, Harms S, Leach MO, Lehman CD, *et al.* American Cancer Society guidelines for breast screening with MRI

as an adjunct to mammography. CA Cancer J Clin 2007; 57(2): 75-89.

- 2. Bray F, Ren JS, Masuyer E, Ferlay J. Global estimates of cancer prevalence for 27 sites in the adult population in 2008. Int J Cancer 2013; 132(5): 1133-45.
- 3. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, *et al.* Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015; 136(5): E359-86.
- 4. Figueroa A, Soria E, Cantero J, Sanchez M, Goleniowski M. Cytotoxic activity of Thelesperma megapotamicum organic fractions against MCF-7 human breast cancer cell line. J Cancer Ther 2012; 3(6): 103-9.
- Rajkapoor B, Jayakar B, Murugesh N. Antitumor activity of Indigofera aspalathoides on Ehrlich ascites carcinoma in mice. Indian J Pharmacol 2004; 36(1): 38-40.
- 6. Zakaria ZA, Mohamed AM, Jamil NS, Rofiee MS, Hussain MK, Sulaiman MR, *et al.* In vitro antiproliferative and antioxidant activities of the extracts of Muntingia calabura leaves. Am J Chin Med 2011; 39(1): 183-200.
- 7. Ayob Z, Samad A, Bohari S. Cytotoxicity activities in local Justicia gendarussa crude extracts against human cancer cell lines. Jurnal Teknologi 2013; 64(2): 45-52.
- 8. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, *et al.* The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Ann Intern Med 2009; 151(4): W65-94.
- 9. Nelson HD, Fu R, Humphrey L, Smith MEB, Griffin JC, Nygren P. Comparative effectiveness of medications to reduce risk of primary breast cancer in women: Agency for Healthcare Research and Quality (US), Rockville (MD); 2009.
- Felgines C, Texier O, Morand C, Manach C, Scalbert A, Regerat F, *et al.* Bioavailability of the flavanone naringenin and its glycosides in rats. Am J Physiol Gastrointest Liver Physiol 2000; 279(6): G1148-54.
- 11.Bodet C, La VD, Epifano F, Grenier D. Naringenin has anti-inflammatory properties in macrophage and ex vivo human whole-blood models. J Periodontal Res 2008; 43(4): 400-7.
- 12. Lee CH, Jeong TS, Choi YK, Hyun BH, Oh GT, Kim EH, *et al.* Anti-atherogenic effect of citrus flavonoids, naringin and naringenin, associated with hepatic ACAT and aortic VCAM-1 and MCP-1 in high cholesterol-fed rabbits. Biochem Biophys Res Commun 2001; 284(3): 681-8.
- 13. Edy M, Adam H, Anindyajati A. Natural products for cancer-targeted therapy: citrus flavonoids as potent chemo-preventive agents. Asian Pac J

Cancer Prev 2012; 13(2): 427-36.

14. De Martel C, Ferlay J, Franceschi S, Vignat j, Bray F, Forman D, *et al*. Global burden of cancers attributable to infections: a review and synthetic analysis. Lancet Oncol 2012;13(6): 607-15.

- 15. Sankaranarayanan R, Ramadas K, Thara S, Muwonge R, Prabhakar J, Augustine P, *et al.* Clinical breast examination: preliminary results from a cluster randomized controlled trial in India. J Natl Cancer Inst 2011; 103(19): 1476-80.
- Wang J, Yang Z, Lin L, Zhao Z, Liu Z, Liu X. Protective Effect of Naringenin Against Lead-Induced oxidative stress in rats. Biol Trace Elem Res 2012; 146 (3): 354-9.
- 17. Kim S, Park TI. Naringenin: a partial agonist on estrogen receptor in T47D-KBluc breast cancer cells. Int J Clin Exp Med 2013; 6(10): 890-9.
- Filho JC, Sarria AL, Becceneri AB, Fuzer AM, Batalhao JR, da Silva CM, *et al.* Copper (II) and 2,2'-bipyridine complexation improves chemopreventive effects of naringenin against breast tumor cells. PLoS One 2014; 9(9): e107058.
- 19. Bulzomi P, Bolli A, Galluzzo P, Acconcia F, Ascenzi P, Marino M. The naringenin-induced proapoptotic effect in breast cancer cell lines holds out against a high bisphenol a background. IUBMB Life 2012; 64(8): 690-6.
- 20. Kanno S, Tomizawa A, Hiura T, Osanai Y, Shouji A, Ujibe M, *et al.* Inhibitory effects of naringenin on tumor growth in human cancer cell lines and sarcoma S-180-implanted mice. Biol Pharm Bull 2005; 28(3): 527-30.
- Van Meeuwen JA, Korthagen N, de Jong PC, Piersma AH, van den Berg M. (Anti)estrogenic effects of phytochemicals on human primary mammary fibroblasts, MCF-7 cells and their coculture. Toxicol Appl Pharmacol 2007; 221(3): 372-83.
- 22. Stapel J, Oppermann C, Richter DU, Ruth W, Briese V. Polyphenol compounds with anticarcinogenic qualities: Effects of quercetin (flavonol), chrysin (flavon), kaempferol (flavanol), naringenin (flavanon) and hesperidin (flavanoid) on in vitro breast cancer. J Med Plant Res 2013; 7(29): 2187-96.
- 23. Lee SH, Ryu JK, Lee KY, Woo SM, Park JK, Yoo JW, *et al.* Enhanced anti-tumor effect of combination therapy with gemcitabine and apigenin in pancreatic cancer. Cancer Lett 2008; 259(1): 39-49.
- 24. Choi EJ, Kim GH. 5-Fluorouracil combined with apigenin enhances anticancer activity through induction of apoptosis in human breast cancer MDA-MB-453 cells. Oncol Rep 2009; 22(6): 1533-7.
- 25. Singh M, Bhatnagar P, Srivastava AK, Kumar P, Shukla Y, Gupta KC. Enhancement of cancer chemosensitization potential of cisplatin by tea

polyphenols poly(lactide-co-glycolide) nanoparticles. J Biomed Nanotechnol 2011; 7(1):202.

- 26. Wright CJ. Estrogen receptor status in breast cancer. Can J Surg 1980; 23(4): 316-7.
- 27. Harris DM, Besselink E, Henning SM, Go VL, Heber D. Phytoestrogens induce differential estrogen receptor alpha- or Beta-mediated responses in transfected breast cancer cells. Exp Biol Med (Maywood) 2005; 230(8): 558-68.
- Ruh MF, Zacharewski T, Connor K, Howell J, Chen I, Safe S. Naringenin: a weakly estrogenic bioflavonoid that exhibits antiestrogenic activity. Biochem Pharmacol 1995; 50(9): 1485-93.
- 29. Kretzschmar G, Zierau O, Wober J, Tischer S, Metz P, Vollmer G. Prenylation has a compound specific effect on the estrogenicity of naringenin and genistein. J Steroid Biochem Mol Biol 2010; 118(1-2): 1-6.
- 30. Nathan L, Shi W, Dinh H, Mukherjee TK, Wang X, Lusis AJ, *et al.* Testosterone inhibits early atherogenesis by conversion to estradiol: critical role of aromatase. Proc Natl Acad Sci U S A 2001; 98(6): 3589-93.
- 31. Zhou J, Gurates B, Yang S, Sebastian S, Bulun SE. Malignant breast epithelial cells stimulate aromatase expression via promoter II in human adipose fibroblasts: an epithelial-stromal interaction in breast tumors mediated by CCAAT/enhancer binding protein beta. Cancer Res 2001; 61(5): 2328-34.
- 32. Chen S. Aromatase and breast cancer. Front Biosci 1998; 3: d922-33.
- 33. Le Bail JC, Laroche T, Marre-Fournier F, Habrioux G. Aromatase and 17betahydroxysteroid dehydrogenase inhibition by flavonoids. Cancer Lett 1998; 133(1): 101-6.
- Ibrahim AR, Abul-Hajj YJ. Aromatase inhibition by flavonoids. J Steroid Biochem Mol Biol 1990; 37(2): 257-60.
- 35. MäkeläS, Poutanen M, Lehtimäki J, Kostian M-L, Santti R, Vihko R. Estrogen-specific 17βhydroxysteroid oxidoreductase type 1 (EC 1.1. 1.62) as a possible target for the action of phytoestrogens. Exp Biol Med 1995; 208(1): 51-9.
- 36. Sanderson JT, Hordijk J, Denison MS, Springsteel MF, Nantz MH, van den Berg M. Induction and inhibition of aromatase (CYP19) activity by natural and synthetic flavonoid compounds in H295R human adrenocortical carcinoma cells. Toxicol Sci 2004; 82(1): 70-9.
- 37. Deniz F, Dilek K, Hande M, Umit UM, Handan K. Ki-67 and caspase expression in breast carcinoma: does variance in locational sampling exist? Int J Clin Exp Pathol 2015; 8(9): 11305-13.
- 38. Devarajan E, Sahin AA, Chen JS, Krishnamurthy RR, Aggarwal N, Brun AM, *et al.* Downregulation of caspase 3 in breast cancer: a possible mechanism for chemoresistance.

Oncogene 2002; 21(57): 8843-51.

- 39. Janicke RU, Sprengart ML, Wati MR, Porter AG. Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J Biol Chem 1998; 273(16): 9357-60.
- 40. Yang PM, Tseng HH, Peng CW, Chen WS, Chiu SJ. Dietary flavonoid fisetin targets caspase-3-deficient human breast cancer MCF-7 cells by induction of caspase-7-associated apoptosis and inhibition of autophagy. Int J Oncol 2012; 40(2): 469-78.
- 41. Ren W, Qiao Z, Wang H, Zhu L, Zhang L. Flavonoids: promising anticancer agents. Med Res Rev 2003; 23(4): 519-34.
- 42. Toniolo PG, Levitz M, Zeleniuch-Jacquotte A, Banerjee S, Koenig KL, Shore RE, *et al.* A prospective study of endogenous estrogens and breast cancer in postmenopausal women. J Natl Cancer Inst 1995; 87(3): 190-7.
- 43. Orhan IE, Nabavi SF, Daglia M, Tenore GC, Mansouri K, Nabavi SM. Naringenin and atherosclerosis: a review of literature. Curr Pharm Biotechnol 2015; 16(3): 245-51.