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Background: Metastasis is the main cause of death toll among breast cancer 
patients. Since current approaches for diagnosis of lymph node metastases are time-
consuming, deep learning (DL) algorithms with more speed and accuracy are 
explored for effective alternativest. 

Methods: A total of 220025 whole-slide pictures from patients’ lymph nodes were 
classified into two cohorts: testing and training. For metastatic cancer identification, we 
employed hybrid convolutional network models. The performance of our diagnostic system 
was verified using 57458 unlabeled images that utilized criteria that included accuracy, 
sensitivity, specificity, and P-value. 

Results: The DL-based system that was automatically and exclusively capable of 
quantifying and identifying metastatic lymph nodes was engineered. Quantification 
was made with 98.84% accuracy. Moreover, the precision of VGG16 and Recall was 
92.42% and 91.25%, respectively. Further experiments demonstrated that metastatic 
cancer differentiation levels could influence the recognition performance.   

Conclusion: Our engineered diagnostic complex showed an elevated level of 
precision and efficiency for lymph node diagnosis. Our innovative DL-based system has 
a potential to simplify pathological screening for metastasis in breast cancer patients. 

Copyright © 2022. This is an open-access article distributed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 International License, which permits copy 
and redistribution of the material in any medium or format or adapt, remix, transform, and build upon the material for any purpose, except for commercial purposes. 

 
INTRODUCTION 
Breast cancer (BC) is the most prevalent cancer 

among women and raises a fundamental challenge in 
public health globally. Breast cancer continues to be 
the most commonly diagnosed cancer and the second 
leading cause of cancer deaths among U.S. women.1 
The rate of BC incidence shows no declining prospect 
and in 2021, an estimated 281,550 new cases of 
invasive BC were expected to be diagnosed in women 
in the U.S. including 2650 new invasive cases, with an 
estimated death toll of 43600 women.2 

Despite our profound understanding of biological 
mechanisms behind BC progression that led to 
development of various diagnostic and therapeutic 
approaches, the widespread incidences of BC and its 
subsequent heavy tolls necessitate early and accurate 
detection of BC. Besides, the emergence of 
personalized medicine drastically increases the load of 
work for pathologists and further complicates the 
histopathologic detection of cancer. Therefore, it is 
important that diagnostic protocols equally concentrate 
on the accuracy and efficiency of their performance. 

Recognition of lymph node metastases (LNMets) 
is essential for pathological staging, prognosis, and 
adoption of appropriate treatment strategy in BC 
patients.3 Preoperative prediction of LNMets provides 
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invaluable information that helps specify 
complementary therapy and expand surgical plans, 
thereby simplifying pre-treatment decisions. Currently, 
intraoperative sentinel lymph node biopsy is the first 
line diagnostic test for LNMets that includes surgery 
for biopsy preparation, histopathological processing 
and meticulous examination by an experienced 
pathologist. The pathologist should visually scan hard-
to-detect large regions suspected of being cancerous in 
search of malignant areas.4 This procedure is tedious, 
time-consuming, and inefficient in finding small 
malignant areas. Also, with many false-positive 
feedbacks, the diagnostic accuracy of this procedure is 
questionable.5,6 Investigations are aimed at substituting 
this inefficient and poorly sensitive method with more 
efficient strategies. Invasion prediction of tumor-
infiltrating lymphocytes,7 the use of fluorescent 
probes,8,9 one-step nucleic acid amplification,10 and 
circulating microRNA detection)11 are some of these 
emerging intraoperative strategies. 

Parallel improvements are under way in digital and 
artificial intelligence-based approaches in biomedicine 
that are gaining momentum. In fact, the remarkable 
progress made in the quality of whole-slide images 
paves the ground for clinical utilization of digital 
images in anatomic pathology. These improvements 
alongside the advancements made in digital image 
analysis have made it possible for computer-aided 
diagnostics in pathology in order to enhance clinical 
care and histopathologic interpretation.12 Recently, AI-
based technologies have shown powerful performance 
in different automated image-recognition usages,13 
including image analysis of mammography,14 
magnetic resonance,15,16 and ultrasound.17,18,19 Lately, 
multiple DL-based algorithms including convolutional 
neural networks (CNNs) have been established for 
LNMets detection,19,20,21,22  among other applications in 
the field of pathology.  

The aim of our current study is to develop a DL-
based algorithm in order to specify metastatic areas 
located in small-scale image patches that are obtained 
from bigger digitally-based pathology scans of lymph 
nodes. 

 
METHODS 
In this study, we applied a hybrid method of CNN-

based classification for classifying our images. Two 
well-known deep and pre-trained CNN models 
(Resnet50, VGG16) and two fully-trained CNNs 
(Mobile-net, Google net) were employed for transfer 
learning and full training. In order to train the CNN, we 
used open-source DL-based Tensorflow and Keras 
libraries. The models’ performance was analyzed in 
terms of accuracy, sensitivity, specificity, receiver 
operating characteristic curves, areas under the 
receiver operating characteristic curve, and heat maps. 

Datasets 
We utilized the Camelyon16 dataset consisting of 

400 hematoxlyin and eosin (H&E) whole-slide images 
of lymph nodes, with metastatic regions labeled. The 
images are in Portable network graphics (PNG) format 
and can be downloaded here: 
“https://www.kaggle.com/c/histopathologic-cancer-
detection/data.” Furthermore, the data has two folders 
related to testing and training images as well as a 
training labels file. There are 220k training images, 
with a roughly 60/40 split between negatives and 
positives, and 57k evaluation images 

In the dataset, scientists are endowed with plenty 
of small pathological images to categorize. An image 
ID is assigned to each file. The ground truth for the 
images located in the train folder is provided by a file 
named train_labels.csv. Indeed, scholars forecast the 
labels that are for the images within the test folder. To 
be more specific, a positive label demonstrates that the 
patch center region (32x32 px) includes minimum one 
pixel of tumor-associated tissue. Moreover, tumor 
tissue located in the patch’s outer area does not affect 
the label. 

 
Preprocessing 
One of the essential elements for categorizing 

histological images is pre-processing. The dataset 
images are fairly large, while CNNs are normally 
designed in order to receive significantly smaller 
inputs. Hence, the images’ resolution needs to be 
diminished to take in the input while keeping the key 
features. The dataset size is considerably lower than 
what is commonly needed to train a DL model 
appropriately; therefore, data augmentation is 
employed to raise the unique data amount in the set. In 
fact, this method greatly contributes to avoiding 
overfitting that is a phenomenon by which the model 
absorbs the training data properly, albeit completely 
unable to categorize and generalize unseen images.23, 24 

 
Data Augmentation 
The combinations of approaches supplied by the 

Keras library were examined to see their influence on 
overfitting and their contribution to enhancing 
categorization accuracy. Analyzing histological 
images is rotationally invariant, meaning that it does 
not take into account the angle at which a microscopy 
image is viewed. Consequently, employing rotation 
augmentation for the image should not affect the 
architecture training negatively.23 

 
Ensemble Deep-Learning Approach for Detecting 

Metastatic Breast Cancer: Proposed Method 
Innovation: Layer-wise fine-tuning and different 

weight initialization schemes. 
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In this study, we propose an autonomous 
classification method for BC classification. We used 
two pre-trained methods (VGG16, Resnet50) and two 
fully-trained ones (Google net and Mobile net) for our 
classification study. The models have been previously 
trained using the ImageNet database, which can be 
retrieved from the image-classification library of 
TensorFlow-Slim (http://tensorflow.org). Finally, we 
compared the outputs of the algorithms used in the pre-
trained period and those of fully trained period in order 
to adequately evaluate the function of all models 
applied for the classification of breast histopathologic 
images into benign (B) and malignant (M) in the 
precise diagnosis of BC metastasis.  

 
Pre-Training and Fine-tuning deep learning 

algorithms 
In AI, pre-training is when a model is trained on 

one task to help it create parameters that may be 
applied to subsequent tasks. Humans are the ones who 
came up with the notion of pre-training. We do not 
have to learn anything from scratch because of an 
intrinsic skill. Instead, we transfer and reuse our 
previous knowledge to better interpret new information 
and perform a range of new activities.  

Pre-training in AI imitates how humans process 
new information. That is, model parameters from 
previously learnt tasks are used to initialize model 
parameters for future tasks. In this approach, past 
knowledge aids new models in effectively performing 
new tasks based on previous experience rather than 
starting from blank. Simply explained, a pre-trained 
model is one that has already been taught to handle a 
comparable issue by someone else. Instead of 
beginning from scratch to tackle a comparable 
problem, you start with a model that has already been 
trained on another problem.  

Fine-tuning deep learning techniques, on the other 
hand, will aid in improving the accuracy of a new 
neural network model by incorporating data from an 
existing neural network and utilizing it as an 
initialization point to speed up and simplify the training 
process. Although fine-tuning is useful for training 
new deep learning algorithms, it can only be employed 
when the dataset of an existing model and the dataset 
of the new deep learning model are similar.45,46,47 

The basic steps of image classification using a 
deep CNN are demonstrated in Figure 1.  In the model, 
the selected image is passed through a set of 
convolution layers with a fully connected layer, 
pooling layer, softmax layer, and layer filter. 

 

 

Figure 1. Training process of the experiments 
 

 
We trained our Ensemble deep convolutional 

neural network utilizing a training whole-slide pipeline 
in order to specify whether a selected image includes 
metastasis. The pipeline compromises model update 
and data preparation. In this classification system, low-
level input image features are extracted by the first 
convolution layer, while semantic features are 
extracted by subsequent layers. The output is produced 

within the convolution layer and via employing dot 
product when a kernel slides over input. This process 
is accompanied by bias, thereby applying a nonlinear 
activation function such as Rectified linear activation 
is performed. The convolution layer output is 
transmitted to the pooling layer in order to decrease the 
image dimensionality and maintain the essential image 
information simultaneously. A series of pooling and 

Evaluate the model

Convert probability into predictions

Train EDCNN model with new Classification 
Layers

Normalize data

Breast Hisopathology Images
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convolution layers extract high-level image features. 
Thereafter, fattening the feature map to a 1D vector and 
feeding it to a fully connected network are carried out. 
More specifically, a fully connected network includes 
several hidden layers possessing biases and weights. 
The neural networks described above employs an 
activation function which is nonlinear while permitting 
backpropagation. In contrast, backpropagation is not 
supported by the other activation function that is linear 
since the function derivative is not associated with 
inputs. Essentially, the neural network performance is 
not likely to enhance with an increase in hidden layers 
unless we employ a nonlinear function. Lastly, an 
activation function like softmax or sigmoid is 
performed to categorize the object based on zero to one 
probability.  

 
Computer Hardware and Software 
We used Google Colab, a Multi-graphics 

processing unit (GPU) tool, to run our experiments. We 
used a variety of modules in this kernel. Most of these 
modules provided much more functionality than we 
needed, but they were all handy. Software 
requirements are outlined in Table (1). Below is a 
detailed description of these modules: 

• Glob – used for readily finding matching file 
names 

• NumPy - the math module with applications in 
random number generation, Fourier transforms, linear 
algebra, etc. 

• Pandas - a powerful module for data structures 
and analysis 

• Keras - a high-level DL Application 
Programming Interface (API). In our case, it was 
employed to ease TensorFlow usage 

• CV2 – used for image processing (we utilized 
it for loading images) 

• TQDM - a minimalistic yet powerful and easy-
to-use progress bar 

• Matplotlib - a plotting module 
 
 

Table 1. Software Requirements 

Distribution Anaconda Navigator and 
Google Colab 

API Keras 
Library Tensor Flow, OpenCV 

Packages Matplotlib, numpy, pandas, 
scikitLearn 

Language Python 3.7 
IDE Jupyter Notebook 
GPU Architecture Google Colab 
Applications LabelImg, TensorBoard 

 

Performance Metrics 
The performance of trained model has to be 

assessed on unseen data, a.k.a test dataset, using DL. 
The analysis of algorithms can be affected by 
performance metrics selection. In essence, this process 
assists in determining reasons for misclassifications; 
thus, they can be corrected via employing essential 
measures.25,26,27,28 

Accuracy: demonstrates the "correct predictions 
made" number by the class, which is divided by the 
"total predictions made" number by the equivalent 
class.  

Sensitivity: Real positive rate = The model will be 
positive if the result for a person in a few percentages 
of cases is positive.  Sensitivity is calculated via the 
below formula. 

Specificity: Real negative rate = The model will be 
negative if the result for a person in a few percentages 
of cases is negative. Specificity is calculated via the 
below formula. 

Recall: the recall criterion states the ratio of 
"number of correctly categorized text data" within a 
specific class to the overall data number that must be 
categorized in the same class.  

Precision: measures the ratio of the "correctly 
made predictions" division related to specific class 
samples to the "total predictions" number associated 
with the same class samples (this number includes the 
sum of all true and false predictions).48,49,50 

 
RESULTS 
In the present research, coherent results related to 

the application of BC categorization in 
histopathological imaging modality were 
demonstrated. Figure 2 illustrates examples of images 
from various classes of the lymph node images we 
analyzed.  

Herein, a balanced dataset was used for both fine-
tuning and full training CNNs. We applied a training 
whole-slide pipeline in order to identify images that 
carry metastasis. Figure 3 represents basic 
classification steps using CNN.   

 
Analysis of the pre-trained and fine-tune network  
In order to measure the pre-trained and fine-tuned 

networks’ classification performance, the whole 
dataset was divided into testing and training groups of 
data. Indeed, separating the dataset into the testing 
and training data is a usual practice in the field of 
neural networks employed for performance 
assessment. Moreover, to identify the size impact of 
testing-training data on network performance, we 
used four splitting fashions for testing-training data 
(60%, 40%). 
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Figure 2. Example images of lymph nodes used for analysis 

 

 

 
Figure 3. Basic steps of classification using CNN 

 

Using these splitting fashions, a series of 
experiments were conducted for four model networks. 
The elapsed time for each test was roughly ten to 
twenty hours. Thereafter, the experimental results 
were calculated with regard to f1 score, recall, and 
precision for each class, respectively. Then, to make 
an easy comparison, both classes’ average results 
were calculated for each test. Additionally, 
classification performance was evaluated employing 
the Area Under the Curve (AUC) parameter and a 
receiver operating characteristics (ROC) analysis in 
order to validate the outcomes. Along with this 

procedure, computing the average precision score 
(APS) for performance measurement was done. 

 
Results of Analyzing the full training and transfer 

learning 
Table 2 shows the parameters used for the models. 

In this study, criteria 60% and 40% were used jointly 
to train and test the models with a learning rate of 
0.0001 with epochs10. The outcomes achieved from 
the full training and transfer learning of Google net, 
Mobile net and VGG16, Resnet50 on the Breast 
cancer are presented. 

 
Table 2. Hyper parameter for transfer learning and full-training 

 Model Train Test Batch 
size 

Class 
mode Learning rate Loss Epochs 

1 VGG16 132015 88010 32 binary 0.0001 Binary 
crossentropy 10 

2 Mobile-net 132015 88010 64 binary 0.0001 Binary 
crossentropy 10 

3 ResNet50 132015 88010 32 binary 0.0001 Binary 
crossentropy 10 

4 Google-net 132015 88010 64 binary 0.0001 Binary 
crossentropy 10 

 
Analyzing the models' performance of the full 

training and transfer learning  
Histopathological Images' dataset is summarized 

in Table 3. The models' performance was analyzed 
within the context of breast histopathological images’ 
categorization, divided into malignant (M) and benign 
(B). Table 3 indicates that the pre-trained and fine-

tuned VGG16 network effectively performed better 
than the ResNet50 network, whilst the performance of 
google-net and that of ResNet50 could be compared 
with each other. Furthermore, in fully trained 
networks, mobile-net yielded poor results related to 
the dataset of 'Breast Histopathological Images. 
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Table 3. Results obtained from the transfer learning and 
full-training 

 Model Loss Accuracy Val 
loss 

Val 
accuracy 

1 VGG 16 0.032
6 0.9884 0.003

0 0.9075 

2 Mobile-
net 

0.325
6 0.8655 0.286

4 0.8810 

3 ResNet5
0 

0.162
1 0.9397 0.163

3 0.9413 

4 Google-
net 

0.058
4 0.9658 0.003

4 0.9135 

 

Figure 4 shows Loss, Accuracy, Val loss, and Val 
accuracy of the four classification models when 
applied to the dataset. Many of the models that were 
built on the dataset had a high-level performance. 
However, the VGG16 method achieved the highest 
recall and highest accuracy of any model applied. 
Therefore, experimental results procured for the 
dataset show that the VGG16 method outperformed 
the other algorithms in terms of all metrics. We 
believe that our cancer prediction framework could 
assist oncologists to predict cancer incidence with 
high accuracy. 

 
 

 
Figure 4.  Results obtained from the transfer learning and full-training 

 
 
Moreover, we assessed the fully trained network 

performance, and google-net displayed an 
outstanding performance compared to ResNet50 
networks. We realized that google-net and VGG16 
networks were clearly biased to a specific class, based 
on the result obtained from Table 2. The solid 
evidence for the mentioned claim could be the recall, 
a.k.a. sensitivity, value. Within fully trained google-
net and VGG16 networks, the recall amount was 
concurrently extremely high for one specific class and 
super low for other classes. Conversely, being equally 
sensitive to both of the classes, the ResNet50 network 
could better work in comparison with google-net and 
VGG16 networks.  

 
Analysis of AUC and ROC in the full training and 

transfer learning models 
Since the dataset size greatly affects the CNNs 

performance, four splitting fashions for testing-
training data (60%–40) were employed so as to 
evaluate model performance regarding testing-
training data size. With respect to this matter, AUC 
and ROC analyses were applied to compare all 

networks' performance, as demonstrated in Figure 5. 
In this figure, the AUC and ROC curves of the fully 
trained and pre-trained networks for the 
abovementioned four splits were compared. We 
found that pre-trained ResNet50 (AUC-98.04%) and 
VGG 16 (AUC 96.01%) perform better than the fully-
trained mobile-net (AUC 97.01%) and google-net 
(AUC 95.00%). 

In Figure 5, we only provide test set accuracies to 
prevent clutter. In each graph, we plotted the 
performance of transfer learning and that of full 
training against the number of iterations. First, we 
found that transfer learning outperforms full training. 
In the VGG16 model, the classification accuracy of 
the test set for transfer learning and that of full 
training is comparable. Second, we also found that 
fine-tuned models converge much earlier than their 
fully trained counterparts, showing that transfer 
learning needs less training time to achieve maximum 
performance. Although there is a great difference 
between natural/facial images and biomedical 
images, transfer learning gives better results than 
learning from scratch. 
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a. VGG16 b. Mobile-net 

  
c. ResNet50 d. Google-net 

Figure 5. ROC analysis for breast cancer classification in (a) Fine-tuned pre-trained VGG16, (b) Fully trained mobile-net, (c) 
Fine-tuned pre-trained ResNet50 (d) Fully-trained google-net 

 
 
All four networks performed well; however, the 

condition was somehow different for full training. In 
this study, VGG19 could perform well, but the 
performance of google-net and VGG16 networks was 
roughly analogous. The mobile-net deviation from the 
common trend was because of its higher sensitivity 
towards malignant and benign conditions during 
60%–40% splitting separately. To sum up, it has been 
illustrated that the utilization of the transfer learning 
method leads to a remarkable performance regarding 
the CNNs with full training in the histopathological 
imaging modality, even in the case of a limited-size 
training dataset. In Table 3, we accurately compared 
our results with other research outcomes. 

Figure 6 illustrates categorization accuracies 
related to the VGG16 test set (Figure 6a), mobile-net 
(Figure 6b), ResNet50 (Figure 6c), and google-net 
(Figure 6d). In each of these figures, we plotted the 
fine-tuning, full training, and transfer learning 
performance against the iterations’ number. Since the 
sizes of the patch were smaller within VGG16, the 
needed iterations’ number was higher in order to train 
them for ten epochs. Firstly, we could observe that 

transfer learning performed better than full training, 
an outcome achieved from the comparisons. The 
aforesaid difference could be because of the feature 
space (source task) size and the network depth. 
Secondly, we viewed that the models being fine-tuned 
converged so much sooner than their fully trained 
counterparts, showing that transfer learning needs less 
time for training to obtain maximum performance. 
The categorization accuracies of fine-tuned VGG16, 
mobile-net, ResNet50 and google-net were 0.9884%, 
0.8655%, 0.9397%, and 0.9658% after the first epoch. 
Deeper architectures like VGG16 converged more 
quickly within fine-tuned settings, indicating the 
ability to handle more intricate features. Besides, the 
utmost 0.9884% precision was obtained in the fine-
tuned VGG16 model.  

The experimental outcomes show that the learned 
features from deep CNNs that were trained on generic 
recognition works can be generalized to biomedical-
related tasks and can be employed in order to fine-
tune the new tasks possessing small datasets. Also, the 
comparison of accuracy, precision, and recall of 
models are outlined in Table 4. 
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a. VGG16 

 
b. Mobile-net 

  
c. ResNet50 

  
d. Google-net 

Figure 6. Comparison of transfer learning with fine-tuning and full training for networks (a) VGG16, (b) mobile-net, (c) 
ResNet50, and (d) google-net 
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Table 4. Comparison of accuracy, precision and recall of 
models 

 Model Validation 
Precision 

Validation 
Recall 

Validation 
Accuracy 

1 VGG 16 0.9242 0.9125 0.9116 

2 Mobile-
net 0.7924 0.8171 0.8106 

3 ResNet50 0.8856 0.8705 0.8754 

4 Google-
net 0.9140 0.9001 0.9125 

Figure 7 shows the Precision, Recall, and 
Accuracy of the four classification models when 
applied to the dataset. The VGG16, and google net 
method achieved the highest precision of any model 
and had the highest accuracy of any model applied. 
Thus, experimental results procured show that the 
VGG16 and google net method outperformed the 
other algorithms in terms of all metrics. 

 

 

 
Figure 7. Comparison of accuracy, precision and recall of models implemented on validation data 
 
 

Table 5. The comparison of data from various studies 
 Date Authors Approach Acc 

1 2018 Sulaiman Vesal et al 30 Inception-V3 97.08 
2 2018 Shallu et al 31 VGG16 with logistic regression 92.60% 
3 2018 Hongliu Cao et al 32 Five DL model 87.10% 
4 2018 Carlos A. Ferreira 33 Inception Resnet V2 0.76 
5 2019 MuhammedTalo 34 ResNet-50 pre-trained model 98.87% 
6 2020 Laith Alzubaidi et al 35 Utilized a transfer learning technique 97.4% 
7 2020 YusufCelik 36 DenseNet-161 91.57% 
8 2021 Chanaleä Munien 37 EfficientNet 98.33% 
9 2020 Rishi Rai et al 38 InceptionV3 and Xception 90.86 

10 2020 Xiangchun Yu et al 39 Pre-trained VGG19 85%, 75%, 
and 80.56% 

11 2019 Md.Nuruddin Qaisar Bhuiyan et 
al 40 Machine learning model 92% to 96% 

12 2019 Ghulam Murtaza et al. 41 Six ML classifiers 81.25% 
13 2020 Abdulrahman Aloyayri et al 42 ResNet18 98.73% 

14 2022 You-WeiWang et al. 43 Multi-energy level fusion model with a principal 
feature enhancement (PFE) 93% 

15 2022 Annals of Nuclear Medicine et 
al. 44 Xception 93% and 

93% 
16 2022 This Paper VGG16 0.9884 % 
17 2022 This Paper Mobile-net 0.8655 % 
18 2022 This Paper ResNet50 0.9397 % 
19 2022 This Paper Google-net 0.9658 % 
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DISCUSSION 
One of the major factors playing a role in women's 

mortality is BC. Nevertheless, an early diagnosis can 
result in cancer-associated death rates reduction. 
Traditional classification methods for BC are based 
upon handcrafted features approaches, and their 
performance depends on the selected features. They are 
also very sensitive to various sizes and intricate shapes. 
Histopathological images of BC possess complex 
shapes; hence, the classical classification techniques 
can be injected into DL algorithms after initial pre-
processing. Employing a computer-assisted diagnosis 
system, scholars observe that efficiency can be 
enhanced, and costs will be diminished for the cancer-
related diagnosis process. At present, an alternative 
answer to diagnosis procedure that can surmount the 
obstacles of classical categorization methods is DL 
models. Deep learning has become an active area of 
research, and its application in histopathology is quite 
new.  

The principal cause of fatalities in BC patients is 
metastasis, referring to cancer cells spreading to 
different organs. Identifying cancer and determining its 
potential in metastasis at an early stage is essential 29. 
To our knowledge, this paper is the first one delineating 
the overall applicability of DL approach to the 
diagnostic assessment of sentinel lymph nodes’ whole-
slide images. The potential suitability of this technique 
for enhancing the diagnostic process efficiency in 
histopathology was well-demonstrated in this research. 
This approach can result in adapted protocols in which 
pathologists conduct detailed analysis on various 
samples since the simple samples are already taken 
care of by a digital computer system. Table (5) 
compares the outcome of multiple relevant studies. 

 
 
 

CONCLUSION 
The comparison of four various CNN models 

possessing depths between three to thirteen 
convolutional layers was performed in this research. 
First of all, our empirical outcomes indicated that 
initializing parameters of a network with transferred 
features could enhance the categorization 
performance for any model. Nevertheless, deeper 
architectures that were trained on larger datasets 
converged rapidly. Furthermore, learning from 
scratch needs more training time than a pre-trained 
network model. Considering this matter, fine-tuned 
pre-trained VGG16 produced the best performance 
with 98.84% precision, 96.01% AUC, and 92.42 % 
APS for 90%–10% testing-training data splitting.   
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