

DOI: 10.32768/abc.6824971358-042

Identifying miR-616-Regulated Molecular Mechanisms and Novel Interacting Genes in Triple-Negative Breast Cancer

Aria Jahanimoghadam^{a,e}, Mohammadali Izadpanah Kazemi^{b,c}, Negin Ahmadi Jazi^c, Zahra Mahmoodkhani^d, Hadis Abdolahzadeh^e, Aşkın Sena Akçay^f, Laya Sajedimonfared^g, Sara Taleahmad^h

^a*Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg, Germany*

^b*Department of Biology, Faculty of Converging Sciences and Technologies, Science and Research Branch, Islamic Azad University (SRBAU), Tehran, Iran*

^c*Department of Zoology, Faculty of Biological Science, Shahid Beheshti University, Tehran, Iran*

^d*Department of Biophysics, Faculty of Science, Tarbiat Modares University, Tehran, Iran*

^e*Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran*

^f*Faculty of Medicine, İstanbul Okan University, İstanbul, Turkey*

^g*Department of Biosciences, Faculty of Science and Technology, University of Milan, Milan, Italy*

^h*Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran*

ARTICLE INFO

Received:

13 November 2025

Revised:

5 January 2026

Accepted:

7 January 2026

ABSTRACT

Background: Among the major subtypes of breast cancer, Triple-Negative Breast Cancer (TNBC) is recognized as the most aggressive form of invasive breast cancer, associated with a poor prognosis and high mortality rate. Consequently, gaining insights into the underlying mechanisms of TNBC is of paramount importance. We focused on investigating the molecular mechanism of miR-616, a confirmed metastasis-related microRNA, in the pathogenesis and metastatic behavior of TNBC.

Methods: We obtained the mRNA dataset (GSE38959) from GEO to identify differentially expressed genes (DEGs). The target genes of miR-616 were predicted using the miRWalk and TargetScan databases. Subsequently, the genes that overlapped between these predictions were used to construct a protein-protein interaction network. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed. Module discovery was conducted using Molecular Complex Detection, visualized through Cytoscape, and further annotated using ClueGO. Finally, a literature review followed by a survival analysis was carried out.

Results: We identified 1725 differentially expressed genes (1109 upregulated, 616 downregulated), 116 of which overlapped with miR-616 targets. Among these, 31 downregulated genes were selected due to their reciprocal regulation with miR-616 expression. These genes were enriched in several cancer-associated pathways, specifically the estrogen, neurotrophin, JAK-STAT, and PI3K-Akt signaling pathways. We identified 16 novel candidate genes involved in miR-616-related TNBC pathogenesis, with *KCNE1* showing a significant correlation with overall patient survival (HR=0.72, P=0.044).

Conclusion: These findings shed light on how miR-616 exerts its regulatory effect, underscoring its pivotal role in metastasis development in TNBC patients.

Keywords:

breast neoplasms, triple-negative, MicroRNAs, neoplasm metastasis, gene expression profiling, signal transduction

Copyright © 2026. This is an open-access article distributed under the terms of the [Creative Commons Attribution-Non-Commercial 4.0](https://creativecommons.org/licenses/by-nd/4.0/) International License, which permits copy and redistribution of the material in any medium or format or adapt, remix, transform, and build upon the material for any purpose, except for commercial purposes.

INTRODUCTION

Breast cancer (BC) is the most prevalent form of cancer in women and represents a significant global public health concern. Its incidence is projected to rise over the next decades.¹ Advances in breast cancer awareness and imaging techniques have contributed

***Address for correspondence:**

Dr. Sara Taleahmad,
Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
Email: s.taleahmad@gmail.com

to enhanced diagnosis and screening.² However, despite progress in screening, diagnosis, and treatment, approximately 12% of individuals diagnosed with breast cancer progress to metastatic stages. Currently, there is no cure for metastatic breast cancer. The prognosis remains poor, with a 5-year survival rate of approximately 26%. Breast cancer is categorized into three main subtypes based on molecular markers for estrogen and progesterone receptors, as well as human epidermal growth factor 2 (ERBB2 or HER2). Among these, TNBC, characterized by the absence of these markers, is particularly aggressive and associated with a higher likelihood of disease progression and lower survival rates compared to other types of breast cancer.³ TNBC is the most challenging form of invasive breast cancer to treat and carries a higher risk of metastasis, particularly to the brain and bones, potentially due to its propensity for hematogenous spread rather than lymphatic.⁴ TNBC patients do not respond to hormonal or HER2-targeted therapies, necessitating specific treatment approaches.⁵

MicroRNAs (miRNAs) are a class of non-coding RNA molecules that play a crucial role in regulating gene expression. They have garnered significant attention for their potential applications from diagnosis to prognosis in various diseases, including TNBC.^{6,7} Dysregulation of miRNA expression is believed to impact processes such as tumorigenesis, cancer progression, and disease pathogenesis. Additionally, miRNAs influence a wide array of cellular activities, including proliferation, metabolism, apoptosis, invasion, and migration.^{7,8} One such miRNA, miR-616 has been implicated as an oncogene in multiple cancers, including breast, hepatocellular, and gastric cancers, where it promotes metastasis by targeting genes like TIMP2 and modulating MMP signaling.^{9,10} Studies suggest that miR-616 may act as an oncogene and could potentially serve as a biomarker for breast cancer. Elevated levels of miR-616 have been observed in TNBC tissues and cell lines, indicating its potential role in TNBC cell metastasis and invasion. However, the precise mechanism remains unclear. Recent research has revealed a link between miR-616 and TNBC, showing that it promotes progression and metastasis by directly targeting the TIMP2 gene. Given the multifunctional nature of miRNAs and their ability to target multiple genes, it is likely that miR-616 may also impact other crucial genes involved in TNBC.¹⁰

The advent of high-throughput technologies and the integration and analysis of corresponding data have revolutionized our approach to understanding various aspects of medicine, from diagnosis to treatment.¹¹ Our investigation used a systems biology

approach to uncover the underlying molecular mechanism of miR-616 in TNBC to provide deeper insights into the metastasis and overall pathogenesis of the disease.

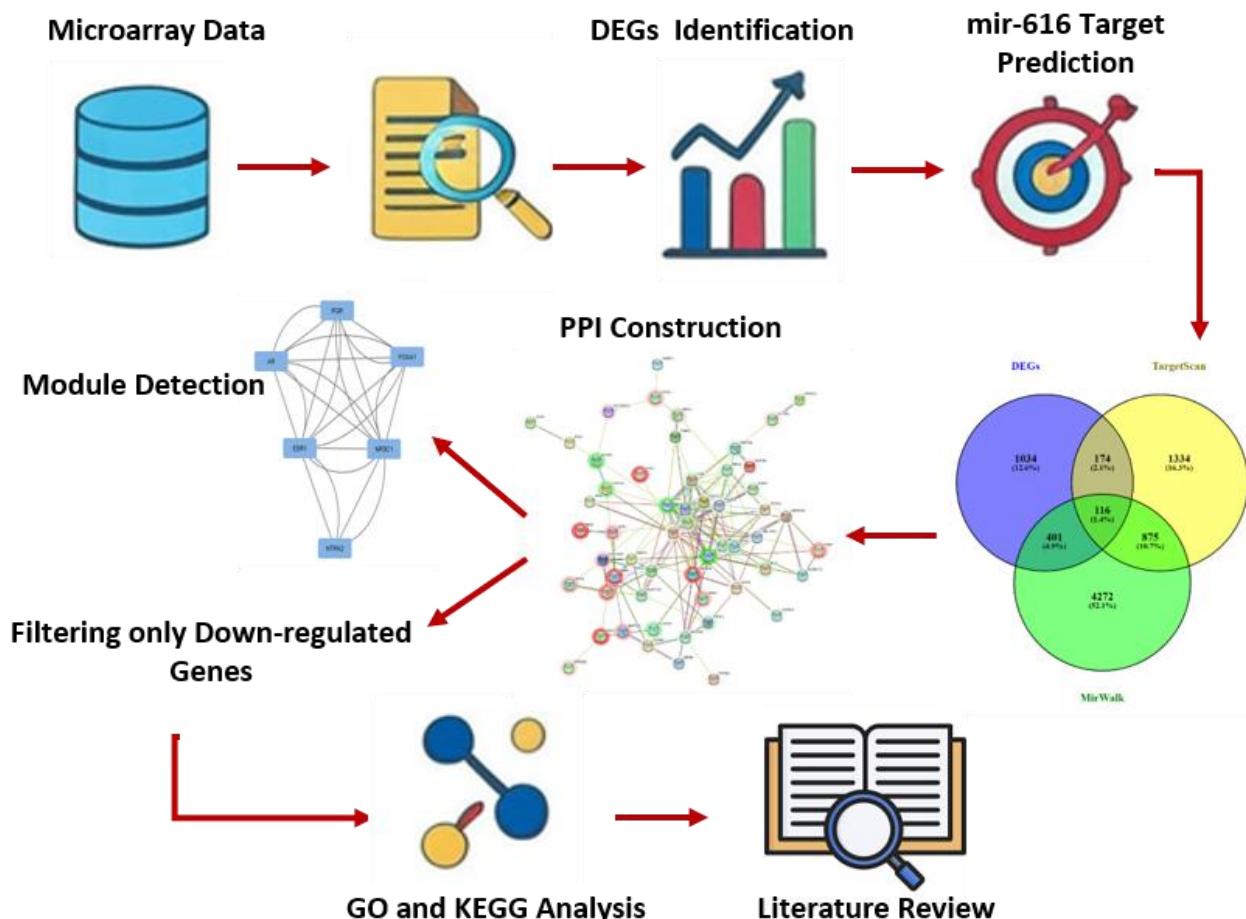
METHODS

Identification of Differentially Expressed Genes (DEGs)

In this study, we utilized the mRNA expression dataset GSE38959 obtained from the Gene Expression Omnibus (GEO) database.¹² This dataset encompasses profiling information from 30 samples of TNBC, 13 samples of normal mammary ductal cells, and 4 samples from other healthy tissues. For our analysis, we focused exclusively on the TNBC and normal mammary ductal cell samples. The overall study process is illustrated in Figure 1. The initial step involved using GEO2R (R 4.2.1), an openly accessible online tool within GEO, for detecting Differentially Expressed Genes (DEGs). We selected a fold-change threshold of $|\log FC| > 1.5$ to prioritize genes exhibiting biologically meaningful differential expression, as this cut-off has been widely adopted in transcriptomic analyses of triple-negative breast cancer (TNBC) to focus on robust changes associated with tumor aggressiveness.¹³ This methodology was employed to compile the list of DEGs. Quality control was performed using boxplots and PCA to assess sample distribution and detect outliers (Figure S1).

Predicting miR-616 Targets

The prediction of miR-616 target genes was conducted using two distinct tools: miRWalk (version 3.0, <http://mirwalk.umm.uni-heidelberg.de/>) server and TargetScan (version 7.2, http://www.targetscan.org/vert_72/). From the results obtained from miRWalk, we refined the selection based on the following criterion: a binding probability exceeding 0.9, and the 3' UTR as the position of miR-616 on the mRNA. These thresholds balance sensitivity and specificity, allowing for the identification of key regulatory networks without excessive noise.¹⁴ TargetScan predictions were filtered by context++ score and conserved seed matches. miRWalk targets were filtered by binding probability > 0.9 and 3'UTR localization. Subsequently, we employed Venny 2.1 to identify the genes that overlapped across our three candidate gene lists. This process was undertaken to ensure a comprehensive and accurate set of potential miR-616 target genes.


Protein-protein interaction construction

Protein-protein interaction (PPI) network analysis has recently become a crucial concept for systems

biologists due to its various applications. In our study, we performed the construction of a PPI network of 116 overlapping genes with the help of the STRINGdb R package (v11.5). We focused on down-regulated genes due to their reciprocal regulation with up-regulated miR-616, as miRNAs typically suppress target mRNAs. Gene Ontology (GO) enrichment analysis of the gene set was performed using the Enrichr web tool to identify significantly overrepresented terms in the biological process,

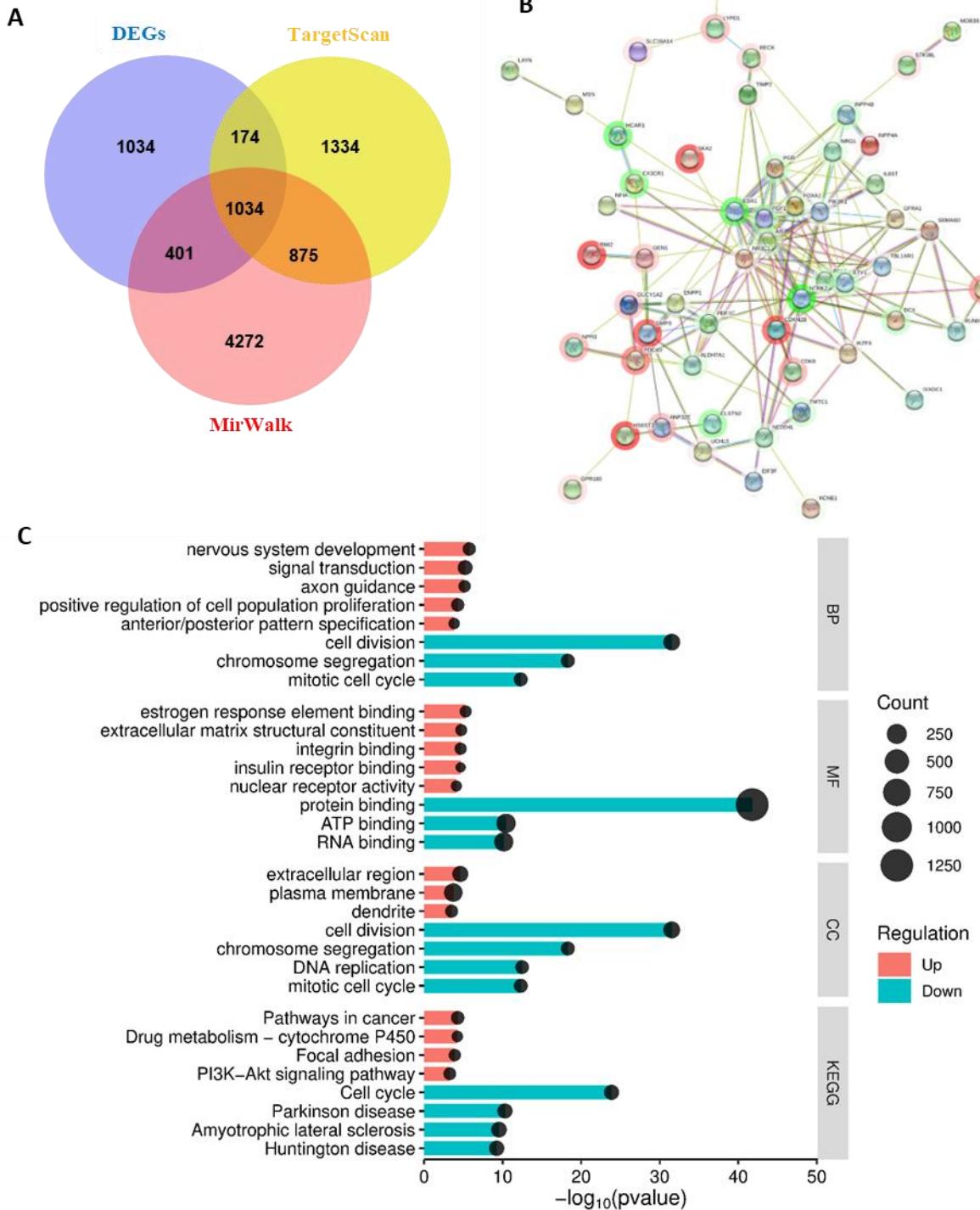
molecular function, and cellular component ontologies. Pathway enrichment was also carried out using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database in Enrichr. An adjusted P-value less than 0.05 was set as statistical significance. Subsequently, Jensen disease, a data mining-based tool, was utilized to check the validity of the constructed PPI network based on gene-disease association from the literature.

Figure 1. Workflow of the study design. This flowchart outlines the key steps: DEG identification from GSE38959, miR-616 target prediction via miRWALK and TargetScan, overlap extraction, PPI network construction in STRING, enrichment analyses (GO/KEGG), module detection with MCODE, and survival validation in GEPIA.

Module detection and enrichment analysis

In addition, the molecular complex detection (MCODE) plugin (2.0.0) of Cytoscape (3.9.1) was used to identify the most important modules in the network. Modules are highly connected subnetworks that have practical applications as they share common pathways or encode special protein complexes. Degree Cutoff=2 and K-Core=2 were selected as standard parameters in MCODE to identify highly interconnected subnetworks while minimizing false positives. Subsequently, we performed GO analysis for each module of the PPI network with ClueGO (2.5.8). Finally, a current literature review was

performed to determine the number of genes in our set with established direct links to breast cancer (BC) and other malignancies. Afterward, survival analysis was conducted using gene expression profiling interactive analysis (GEPIA) on TCGA/GTEX data for invasive breast carcinoma (BRCA), encompassing TNBC subtypes.


RESULTS

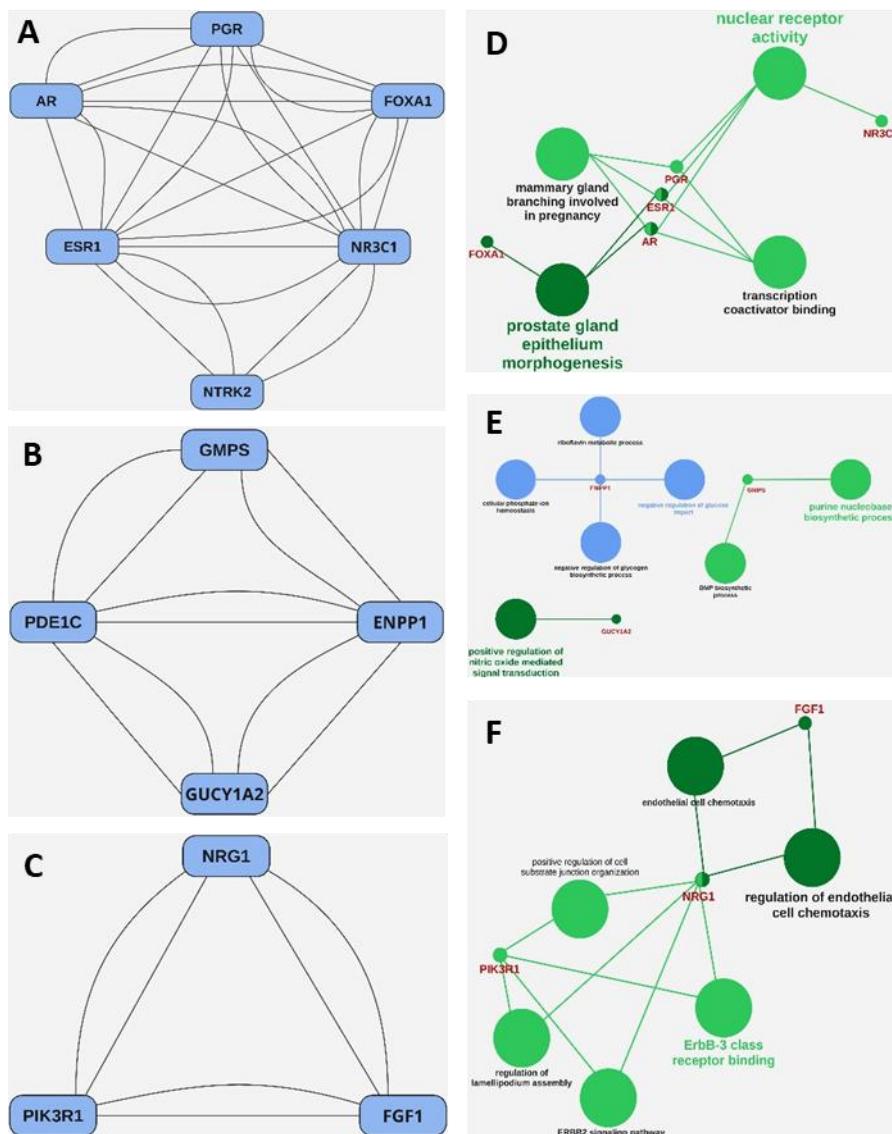
Identification of miR-616-related DEGs

In our analysis, we identified 1725 differentially expressed genes (1109 were up-regulated and 616 down-regulated). Figure 2 illustrates the overall

distribution and clustering of DEGs between TNBC and normal samples. The volcano plot (Figure 2A)

shows up- and down-regulated genes according to logFC and adjusted p-values.

Figure 2. Identification and functional enrichment analysis of differentially expressed genes (DEGs) in TNBC. (A) Venn diagram of overlaps (116 genes) between DEGs (GSE38959), miRWalk targets, and TargetScan. (B) Network analysis. (C) Biological processes (BP); Molecular function (MF); Cellular components (CC) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways.


Subsequently, we conducted miR-616 target gene prediction using miRWalk, resulting in 5664 entries after filtering. From TargetScan, we selected the top

2500 target genes. Through this process, we uncovered 116 genes (1.4%) that overlapped between our predicted target genes and the identified DEGs.

These 116 genes were enriched in cancer pathways (PI3K-Akt) and steroid signaling, suggesting roles in metastasis. Using this overlapping list, we proceeded to construct a Protein-Protein Interaction (PPI) network. We removed 61 nodes in the network that lacked interactions (from 116 to 55), focusing on biologically relevant hubs; isolated nodes may represent indirect effects. This network represents the

miR-616-related DEGs, comprised of 55 nodes and 159 edges (Figure 2B). The PPI network was visualized using a force-directed layout in Cytoscape, with nodes grouped by enriched functions (signaling pathways). This network provides a visual representation of the relationships among these genes, shedding light on their potential interactions and functional relevance.

Figure 3. (A-C) Detected modules within the PPI network via the Cytoscape software. (D-F) biological representation of detected modules, A, D: The first module, B, E: second module, and C, F: third module.

Enrichment analysis

As illustrated in Figure 2C, the Gene Ontology (GO) analysis unveiled significant enrichments in several biological processes. Notably, these pathways comprised specific mechanisms critical to cancer biology, including steroid hormone-mediated signaling, intracellular steroid hormone receptor signaling, and the regulation of protein kinase B (AKT) signaling. Furthermore, in terms of molecular functions, the most enriched activities of the genes were associated with DNA-binding transcription

activator activity, RNA polymerase II-specific and RNA polymerase II general transcription initiation factor binding.

Regarding cellular components, the phosphatidylinositol 3-kinase complex, class I, and the integral component of the plasma membrane emerged as crucial locations where these genes predominantly carry out their functions. In addition to GO analysis, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis demonstrated that alterations in genes significantly impacted

pathways related to cancer, chemical carcinogenesis, and the estrogen signaling pathway. Lastly, Jensen's disease result validated the robust construction of our network. It indicated that breast fibroadenoma and breast disease were the two most enriched diseases, further reinforcing the relevance and accuracy of our network in relation to breast cancer-related conditions.

PPI network analysis and module annotation

Using the MCODE plug-in, we identified three distinct modules based on the criteria of Degree Cutoff=2, K-Core=2, Node Score Cutoff=0.2, Max Depth=100 (Figure 3A-F). The structural relationships within each module are depicted in Figures 3 A-C. For the first module (Fig. 3D) comprising 6 nodes and 24 edges, GO analysis revealed enrichment in processes related to transcription coactivator binding, nuclear receptor activity, mammary gland branching involved in

pregnancy, and prostate gland epithelium morphogenesis. The second module (Figure 3E) encompassed 4 nodes and 10 edges, and it was primarily enriched for functions related to the nucleotide biosynthetic process and the nitric oxide signaling pathway. The third module (Figure 3F) included 3 nodes and 6 edges. It showed involvement in pathways such as endothelial cell chemotaxis, ErbB2 signaling pathway, ErbB-3 class receptor binding, regulation of lamellipodium assembly, and positive regulation of cell-substrate junction organization. These findings provide valuable insights into the functional roles and interactions within each of these modules.

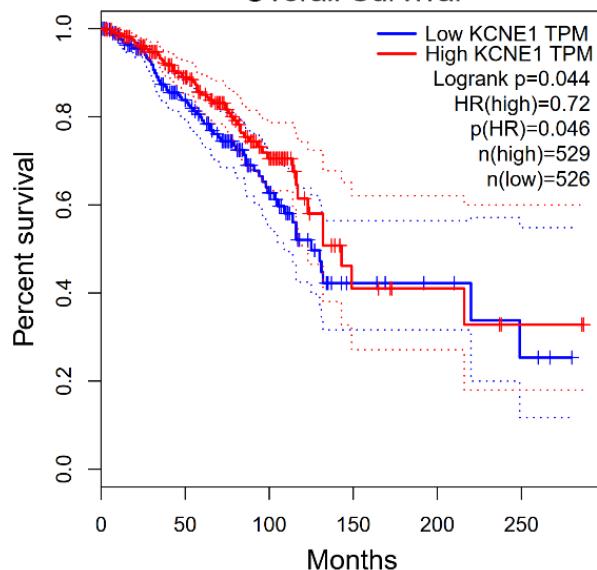
Following this, we refined our selection by focusing solely on the down-regulated genes, aiming to narrow down our targets to those with higher confidence. As a result, we identified only 31 down-regulated genes within the Protein-Protein Interaction (PPI) network (Table 1).

Table 1. List of 31 down-regulated miR-616 target genes in TNBC PPI network

Gene symbol	Function / Pathway Association	Adj. p.val	Log FC
<i>NTRK2</i>	Neurotrophin receptor; neuronal survival; PI3K–Akt signaling	6.20E-05	-4.06
<i>ESR1</i>	Estrogen receptor; hormone signaling; breast cancer driver gene	2.85E-06	-3.86
<i>HCAR1</i>	Lactate receptor; GPCR signaling; metabolic regulation	1.88E-05	-3.80
<i>CX3CR1</i>	Chemokine receptor; immune cell migration; X3CL1/CX3CR1 axis	1.40E-06	-3.59
<i>CLSTN2</i>	Adhesion molecule; synaptic and cell–cell interactions	1.40E-04	-3.49
<i>FGF1</i>	Growth factor; angiogenesis; endothelial signaling	1.03E-06	-3.07
<i>DCX</i>	Microtubule binding; neuronal migration pathways	5.11E-03	-2.94
<i>ETV1</i>	ETS family transcription factor; oncogenic driver in several cancers	2.31E-04	-2.89
<i>PGR</i>	Progesterone receptor; hormone signaling; breast cancer progression	1.08E-04	-2.87
<i>INPP4B</i>	Tumor suppressor; PI3K pathway regulation	1.69E-04	-2.86
<i>TMT1</i>	ER stress response; protein modification	5.04E-04	-2.80
<i>AR</i>	Androgen receptor; hormone signaling & proliferation	1.47E-02	-2.66
<i>ALDH7A1</i>	Aldehyde detoxification; cellular metabolism	9.16E-05	-2.64
<i>BCL2</i>	Anti-apoptotic gene; survival signaling	8.46E-04	-2.57
<i>FOXA1</i>	Pioneer transcription factor; hormone-dependent cancers	1.11E-02	-2.55
<i>NR3C1</i>	Glucocorticoid receptor; stress response; cytokine regulation	2.51E-03	-1.54
<i>NRG1</i>	Ligand for ErbB3/4; ErbB signaling; cell growth & migration	1.69E-06	-2.41
<i>PDE1C</i>	cAMP/cGMP regulation; signal transduction	2.60E-04	-2.29
<i>NEDD4L</i>	E3 ubiquitin ligase; PI3K–Akt regulation; tumor suppressor	6.11E-06	-2.24
<i>RUNX1T1</i>	Transcriptional repressor; chromatin regulation	7.57E-03	-2.15
<i>IL6ST</i>	gp130; JAK–STAT signaling; cytokine receptor complex	1.08E-04	-2.15
<i>KCNE1</i>	Potassium channel regulatory subunit; found prognostic	3.95E-03	-2.04
<i>SEMA6D</i>	Axon guidance; cell migration & adhesion	1.31E-05	-1.91
<i>DIXDC1</i>	Wnt signaling regulator; cytoskeleton remodeling	7.08E-05	-1.85
<i>PIK3R1</i>	PI3K regulatory subunit; cancer-associated pathway	6.66E-03	-1.83
<i>LAYN</i>	Immune suppressive receptor; T-cell regulation	4.29E-03	-1.78
<i>EIF3F</i>	Translation initiation factor; growth and proliferation	8.49E-04	-1.75
<i>GFRA1</i>	Neurotrophic signaling; GDNF receptor	7.60E-03	-1.73
<i>MOB3B</i>	Hippo pathway regulator; cell growth control	1.03E-02	-1.62
<i>NFIA</i>	Nuclear factor I family; transcription regulation	1.23E-02	-1.62
<i>ENPP1</i>	Purinergic metabolism; extracellular signaling	5.56E-03	-1.61

Adjusted p-value: Benjamini–Hochberg FDR correction, Negative logFC: Indicates down-regulation in TNBC compared to normal samples. Functions: Based on KEGG, GO, and published literature.

Subsequent Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis for these 31


genes revealed enrichments in critical pathways, including pathways in cancer, the estrogen signaling

pathway, breast cancer, the neurotrophin signaling pathway, the JAK-STAT signaling pathway, and the PI3K-Akt signaling pathway. These findings further underscore the significance of these down-regulated genes in the context of breast cancer.

We took an additional step by conducting an extensive literature review on the 31 down-regulated genes, and discovered 16 genes that have not been previously associated with breast cancer. To assess the prognostic significance of these newly identified genes in breast cancer, we utilized the GEPIA web-server. Among these 16 genes, only Potassium Voltage-Gated Channel Subfamily E Regulatory Subunit 1 (*KCNE1*) demonstrated a substantial impact on the overall survival of patients with invasive breast carcinoma. Figure 4 illustrates the survival curve of *KCNE1* expression in invasive breast carcinoma patients. HR=0.72 (95% CI: 0.52-0.99, P=0.044) indicates that higher *KCNE1* expression is protective against poor survival.

Overall Survival

Figure 4. Survival analysis of *KCNE1* in breast invasive carcinoma patients.

DISCUSSION

In this study, we performed an extensive bioinformatics analysis to uncover the molecular mechanisms involving miR-616 in TNBC. Our results provide novel bioinformatics evidence for miR-616-associated regulatory networks in TNBC. Although previous evidence has suggested an oncogenic role for miR-616 in breast cancer, particularly through the suppression of TIMP2 and subsequent activation of MMP2/MMP9 signaling¹⁰, the broader regulatory landscape of this miRNA has remained poorly characterized. By integrating differential expression analysis, miRNA target prediction, PPI-network exploration, module detection, and survival analysis, our findings expand

the current understanding of miR-616 and suggest several new pathways and gene candidates relevant to TNBC biology.

Our analysis, particularly the third module highlighted in Figure 3F, suggests that the ErbB signaling pathway might play a pivotal role in instigating the metastatic traits of the tumor. This finding further underscores the complexity and multifaceted nature of miR-616's influence in breast cancer progression.

Although the associations between miR-616 and some of these pathways have not been experimentally validated, our results indicate that miR-616 may influence TNBC progression by modulating genes such as *NRG1*, PIK3R1, and *FGF1*, which collectively participate in ErbB receptor activity, PI3K-Akt signaling, and fibroblast growth factor pathways.^{15,16} Additionally, heightened expression levels of ErbB-3 have been observed in breast cancer patients, showing a correlation with metastasis.¹⁷ Down-regulation of *NRG1* in our dataset may therefore reflect one miR-616-associated mechanism through which TNBC cells alter growth factor signaling. The enrichment of processes such as lamellipodium organization, cell-substrate junction assembly, and endothelial cell chemotaxis suggests that miR-616 might also influence pathways associated with cellular motility and the metastatic phenotype. Moreover, studies have demonstrated that the Arp2/3 complex and Scar/WAVE proteins within lamellipodia serve as key regulators of cell motility, thereby exerting a pivotal role in the metastatic process.¹⁸ This insight underscores the potential impact of miR-616 on the metastatic behavior of breast cancer cells.

Furthermore, claudins, a prominent class of transmembrane proteins involved in forming tight junctions, play a crucial role in breast cancer development. Notably, reduced expression of claudin-6 has been demonstrated to contribute to invasiveness in breast cancer.¹⁹ Collectively, these findings underscore that targeting intercellular junctions and modulating lamellipodium organization present a viable strategy for breast cancer treatment, particularly in the context of metastatic progression. This insight suggests potential therapeutic avenues for addressing advanced stages of breast cancer.

Solid tumors comprise a diverse array of cells, including malignant cells, fibroblasts, endothelial cells, and inflammatory cells. Within tumor tissue, certain molecules, such as vascular endothelial growth factor (VEGF) and primary fibroblast growth factor, act as chemotactic agents, attracting and influencing endothelial cells (ECs).^{20,21} Based on the insights gleaned from the results in Figure 3F, these findings suggest that miR-616 may influence

endothelial cell chemotaxis via FGF-1, with its involvement in cell growth, development, and potentially cancer transformation, is a noteworthy factor in this context. It has been observed that several breast cancer cell lines express FGF-1.²² Given the pivotal role of ECs within the tumor, FGF-1 may potentially contribute to the progression towards metastatic breast cancer. This underscores the intricate interplay between various cellular components and signaling pathways in tumor development and progression.

Mammary gland morphogenesis is a tightly regulated developmental process that occurs under normal circumstances. However, any deviation from this intricate mechanism can potentially lead to the development of breast cancer. Despite its significance, the precise underlying mechanism remains elusive.²³ Within the miR-616 PPI network, the most densely connected module exhibits a strong correlation with mammary gland branching, involving key genes like *AR*, *ESR1*, and *PGR*. This suggests that miR-616 may exert influence over this process, potentially contributing to the development of cancer through a deviation from normal functioning. Notably, these genes are also believed to be involved in transcription coactivator binding, providing further evidence of miR-616's regulatory role in this context. This observation reinforces the notion that miR-616 may play a crucial role in the intricate mechanisms underlying mammary gland development and its potential disruption in the context of cancer. Our results align with and extend previous observations that miR-616 exhibits context-dependent roles in cancer biology. Several studies have reported that miR-616 can function as an oncogenic regulator by promoting proliferation, migration, invasion, and EMT in diverse cancer types. For example, miR-616 is upregulated in hepatocellular carcinoma, where it enhances migration, invasion, and EMT through suppression of *PTEN*, supporting a pro-tumorigenic role in this malignancy.²⁴

We conducted a thorough review of the existing literature and identified several genes that exhibited downregulation in breast cancer patients. These genes have been extensively investigated in prior studies and have demonstrated associations with various other types of cancers. One notable example is *FOXA1*, which belongs to the forkhead class of DNA-binding proteins. The established role of *FOXA1* in prostate cancer further highlights its significance and suggests its potential relevance in the context of breast cancer. This finding underscores the interconnectedness of genetic factors across different cancer types.^{25,26} and *BCL2*, which is an apoptosis-inhibiting protein, is well-studied in pancreatic

cancer²⁷⁻²⁹, and may or may not have definite impacts on breast cancer. *DIXCI* is involved in a variety of cancers, such as colon, prostate³⁰, lung³¹, gastric²⁸, myeloid leukemia³² and Hepatocellular carcinoma.³³ *NEDD4L*, *NTRK2*, and *EIF3F* are each involved in many cancers.

Our literature review of the 31 downregulated miR-616-associated genes revealed 16 genes not previously linked to breast cancer. Among these, *KCNE1* emerged as the most promising candidate, demonstrating a significant association with patient survival. *KCNE1* is best known as a potassium channel regulatory subunit involved in maintaining repolarization currents in excitable tissues.³⁴ Recent reports indicate that ion channels including KCNE family members may contribute to cancer invasion, EMT, and metabolic reprogramming.³⁵ Further investigation into the functions and downstream signaling pathways of *KCNE1* in the context of breast cancer is strongly recommended. Additionally, exploring the potential applications of *KCNE1* in both the diagnosis and treatment of breast cancer, especially in cases of metastatic breast cancer, is a prudent step forward.

Importantly, evidence from other cancer types also supports an oncogenic role for miR-616, providing broader biological context for our findings. In hepatocellular carcinoma, miR-616 has been reported to enhance proliferation, migration, and invasion by suppressing *CPEB3*, indicating its contribution to aggressive tumor behavior.⁹ In non-small cell lung cancer, miR-616 activates oncogenic signaling by targeting *PTEN*, which subsequently facilitates increased proliferation and invasion.²⁹ Furthermore, in prostate cancer, miR-616 has been shown to function as an oncogenic microRNA by downregulating *TFPI-2*, thereby strengthening invasive and metastatic properties.³⁶ Collectively, these studies demonstrate that miR-616 consistently influences cancer-related signaling pathways across diverse tumor types. This cross-cancer evidence aligns with our observations in TNBC and supports the hypothesis that miR-616 may regulate multiple interconnected pathways involved in tumor progression and metastasis.

Limitation

A major limitation is the lack of experimental validation; future studies could employ luciferase reporter assays for target confirmation and in vivo metastasis models for functional assessment. Additional limitations include those of the GSE38959 dataset, such as its small sample size (n=43), cellular heterogeneity, and only 13 normal samples, potentially introducing bias.

CONCLUSION

Taken together, the aforementioned discoveries strongly advocate for a more comprehensive investigation into the role of miR-616 in metastatic breast cancer. Metastasis, being a complex and relatively enigmatic process in cancer biology, warrants closer scrutiny to enhance our comprehension of its underlying mechanisms. In conclusion, our study not only elucidates the fundamental mechanism of miR-616 and advances our understanding of the pathways it influences, but also introduces a novel gene, *KCNE1*, which may potentially play a pivotal role in driving or impacting the progression of TNBC. However, it is important to note that further experimental studies are needed to validate and substantiate these findings in the clinical context. This research lays the groundwork for potential future advancements in the diagnosis and treatment of TNBC.

ETHICAL CONSIDERATIONS

This study utilized publicly available data from an mRNA expression dataset from the Gene Expression Omnibus (GEO) database (accession numbers: GSE38959). As a secondary bioinformatics analysis of pre-existing, publicly accessible data, no additional ethical approval or consent was required from participants.

CONFLICT OF INTEREST

All the authors declare that they have no conflict of interest.

ACKNOWLEDGMENTS

We would like to thank Negar Farhang-Doost for her help with the editing of the manuscript. This study used publicly available GEO data (GSE38959), collected under ethical approvals as per original

REFERENCES

1. Kolak A, Kamińska M, Sygit K, Budny A, Surdyka D, Kukiełka-Budny B, et al. Primary and secondary prevention of breast cancer. *Ann Agric Environ Med.* 2017;23;24(4):549-553. doi: 10.26444/aaem/75943.
2. Akram M, Iqbal M, Daniyal M, Khan AU. Awareness and current knowledge of breast cancer. *Biol Res.* 2017; 2;50(1):33. doi: 10.1186/s40659-017-0140-9.
3. Waks AG, Winer EP. Breast Cancer Treatment: A Review. *JAMA.* 2019; 22;321(3):288-300. doi: 10.1001/jama.2018.19323.
4. Garcia E, Luna I, Persad KL, Agopsowicz K, Jay DA, West FG, et al. Inhibition of triple negative breast cancer metastasis and invasiveness by novel drugs that target epithelial to mesenchymal transition. *Sci Rep.* 2021;3;11(1):11757. doi: 10.1038/s41598-021-91344-7.
5. Al-Mahmood S, Sapiezynski J, Garbuzenko OB, Minko T. Metastatic and triple-negative breast cancer: challenges and treatment options. *Drug Deliv Transl Res.* 2018;8(5):1483-1507. doi: 10.1007/s13346-018-0551-3.
6. Chong ZX, Yeap SK, Ho WY. Roles of circulating microRNA(s) in human breast cancer. *Arch Biochem Biophys.* 2020;30;695:108583. doi: 10.1016/j.abb.2020.108583.
7. Thorsen SB, Obad S, Jensen NF, Stenvang J, Kauppinen S. The therapeutic potential of microRNAs in cancer. *Cancer J.* 2012;18(3):275-84. doi: 10.1097/PPO.0b013e318258b5d6.
8. Hashimoto Y, Akiyama Y, Yuasa Y. Multiple-to-multiple relationships between microRNAs and target

genes in gastric cancer. *PLoS One.* 2013; 8;8(5):e62589. doi: 10.1371/journal.pone.0062589.

- 9. Li Z, Wu L, Tan W, Zhang K, Lin Q, Zhu J, et al. MiR-20b-5p promotes hepatocellular carcinoma cell proliferation, migration and invasion by down-regulating CPEB3. *Ann Hepatol.* 2021; ;23:100345. doi: 10.1016/j.aohep.2021.100345.
- 10. Yuan C. miR-616 promotes breast cancer migration and invasion by targeting TIMP2 and regulating MMP signaling. *Oncol Lett.* 2019 Sep;18(3):2348-2355. doi: 10.3892/ol.2019.10546.
- 11. Govindarajan M, Wohlmuth C, Waas M, Bernardini MQ, Kislinger T. High-throughput approaches for precision medicine in high-grade serous ovarian cancer. *J Hematol Oncol.* 2020 Oct 9;13(1):134. doi: 10.1186/s13045-020-00971-6.
- 12. Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C, et al. NCBI GEO: archive for high-throughput functional genomic data. *Nucleic Acids Res.* 2009;37(Database issue):D885-90. doi: 10.1093/nar/gkn764.
- 13. Li X, Rouchka EC, Brock GN, Yan J, O'Toole TE, Tieri DA, et al. A combined approach with gene-wise normalization improves the analysis of RNA-seq data in human breast cancer subtypes. *PLoS One.* 2018;8;13(8):e0201813. doi: 10.1371/journal.pone.0201813.
- 14. Dweep H, Gretz N. miRWalk2.0: a comprehensive atlas of microRNA-target interactions. *Nat Methods.* 2015;12(8):697. doi: 10.1038/nmeth.3485.
- 15. Tan M, Yu D. Molecular mechanisms of erbB2-mediated breast cancer chemoresistance. *Adv Exp Med Biol.* 2007;608:119-29. doi: 10.1007/978-0-387-74039-3_9.
- 16. Raven JF, Williams V, Wang S, Tremblay ML, Muller WJ, Durbin JE, Koromilas AE. Stat1 is a suppressor of ErbB2/Neu-mediated cellular transformation and mouse mammary gland tumor formation. *Cell Cycle.* 2011; 1;10(5):794-804. doi: 10.4161/cc.10.5.14956.
- 17. Lemoine NR, Barnes DM, Hollywood DP, Hughes CM, Smith P, Dublin E, et al. Expression of the ERBB3 gene product in breast cancer. *Br J Cancer.* 1992;66(6):1116-21. doi: 10.1038/bjc.1992.420.
- 18. Machesky LM. Lamellipodia and filopodia in metastasis and invasion. *FEBS Lett.* 2008 18;582(14):2102-11. doi: 10.1016/j.febslet.2008.03.039.
- 19. Bhat AA, Uppada S, Achkar IW, Hashem S, Yadav SK, Shanmugakonar M, et al. Tight Junction Proteins and Signaling Pathways in Cancer and Inflammation: A Functional Crosstalk. *Front Physiol.* 2019;23;9:1942. doi: 10.3389/fphys.2018.01942.
- 20. Chen CC, Chen LL, Hsu YT, Liu KJ, Fan CS, Huang TS. The endothelin-integrin axis is involved in macrophage-induced breast cancer cell chemotactic interactions with endothelial cells. *J Biol Chem.* 2014;4;289(14):10029-44. doi: 10.1074/jbc.M113.528406.
- 21. Wang D, Xiao F, Feng Z, Li M, Kong L, Huang L, Wei Y, Li H, Liu F, Zhang H, Zhang W. Sunitinib facilitates metastatic breast cancer spreading by inducing endothelial cell senescence. *Breast Cancer Res.* 2020;29;22(1):103. doi: 10.1186/s13058-020-01346-y.
- 22. Payson RA, Chotani MA, Chiu IM. Regulation of a promoter of the fibroblast growth factor 1 gene in prostate and breast cancer cells. *J Steroid Biochem Mol Biol.* 1998;66(3):93-103. doi: 10.1016/s0960-0760(98)00051-x.
- 23. Fata JE, Werb Z, Bissell MJ. Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes. *Breast Cancer Res.* 2004;6(1):1-11. doi: 10.1186/bcr634.
- 24. Zhang D, Zhou P, Wang W, Wang X, Li J, Sun X, Zhang L. MicroRNA-616 promotes the migration, invasion and epithelial-mesenchymal transition of HCC by targeting PTEN. *Oncol Rep.* 2016;35(1):366-74. doi: 10.3892/or.2015.4334.
- 25. Henriksson ML, Edin S, Dahlin AM, Oldenborg PA, Öberg Å, Van Guelpen B, Rutegård J, Stenling R, Palmqvist R. Colorectal cancer cells activate adjacent fibroblasts resulting in FGF1/FGFR3 signaling and increased invasion. *Am J Pathol.* 2011;178(3):1387-94. doi: 10.1016/j.ajpath.2010.12.008.
- 26. Sun Y, Fan X, Zhang Q, Shi X, Xu G, Zou C. Cancer-associated fibroblasts secrete FGF-1 to promote ovarian proliferation, migration, and invasion through the activation of FGF-1/FGFR4 signaling. *Tumour Biol.* 2017;39(7):1010428317712592. doi: 10.1177/1010428317712592.
- 27. Wagner W, Kania KD, Blauz A, Ciszewski WM. The lactate receptor (HCAR1/GPR81) contributes to doxorubicin chemoresistance via ABCB1 transporter up-regulation in human cervical cancer HeLa cells. *J Physiol Pharmacol.* 2017;68(4):555-564.
- 28. Schmall A, Al-Tamari HM, Herold S, Kampschulte M, Weigert A, Wietelmann A, Vipotnik N, Grimminger F, Seeger W, Pullamsetti SS, Savai R. Macrophage and cancer cell cross-talk via CCR2 and CX3CR1 is a fundamental mechanism driving lung cancer. *Am J Respir Crit Care Med.* 2015;15;191(4):437-47. doi: 10.1164/rccm.201406-1137OC.
- 29. Wang H, Cai J, Du S, Guo Z, Xin B, Wang J, et al. Fractalkine/CX3CR1 induces apoptosis resistance and proliferation through the activation of the AKT/NF-κB cascade in pancreatic cancer cells. 2017;35(6):315-26.
- 30. Dawson S-J, Makretsov N, Blows F, Driver K, Provenzano E, Le Quesne J, et al. BCL2 in breast cancer: a favourable prognostic marker across molecular subtypes and independent of adjuvant therapy received. *Br J Cancer.* 2010;24;103(5):668-75. doi: 10.1038/sj.bjc.6605736.
- 31. Hwang KT, Woo JW, Shin HC, Kim HS, Ahn SK, Moon HG, Han W, Park IA, Noh DY. Prognostic influence of BCL2 expression in breast cancer. *Int J Cancer.* 2012;1;131(7):E1109-19. doi: 10.1002/ijc.27539.
- 32. Ali HR, Dawson SJ, Blows FM, Provenzano E, Leung S, Nielsen T, et al. A Ki67/BCL2 index based on immunohistochemistry is highly prognostic in ER-positive breast cancer. 2012;226(1):97-107. doi: 10.1002/path.2976.

33. Bouchalova K, Kharaishvili G, Bouchal J, Vrbkova J, Megova M, Hlobilkova AJCdt. Triple negative breast cancer-BCL2 in prognosis and prediction. Review. 2014;15(12):1166-75. doi: 10.2174/1389450115666141106151143.
34. Voudris KV, Apostolakis S, Karyofillis P, Doukas K, Zaravinos A, Androutsopoulos VP, et al. Genetic diversity of the KCNE1 gene and susceptibility to postoperative atrial fibrillation. 2014;167(2):274-80. e1.
35. Luo Q, Wu T, Wu W, Chen G, Luo X, Jiang L, et al. The functional role of voltage-gated sodium channel Nav1. 5 in metastatic breast cancer. 2020;11:1111.
36. Ma S, Chan YP, Kwan PS, Tang KH, Vielkind J, Guan XY, et al. microRNA-616 induces androgen-independent growth of prostate cancer cells through suppression of TFPI-2 expression. 2010;70(8_Supplement):2083-.

How to Cite This Article

Jahanimoghadam A, Izadpanah Kazemi M , Ahmadi Jazi N, Mahmoodkhani Z, Abdolahzadeh H, Akçay AS, et al. Identifying miR-616-Regulated Molecular Mechanisms and Novel Interacting Genes in Triple-Negative Breast Cancer. Arch Breast Cancer. 2025; 13(1):107-17.

Available from: <https://www.archbreastcancer.com/index.php/abc/article/view/1233>