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Background: Invasive ductal carcinoma (IDC) is a prevalent type of breast 

cancer with significant mortality rates. Early detection is crucial for effective 

treatment options. Deep learning techniques have shown promise in medical image 

analysis, but further improvements are needed.  

Methods: A Wavelet-Convolutional Neural Network (WCNN) is proposed, 

incorporating wavelet filters and convolutional filters in each layer to capture both 

frequency and spatial domain features. The processed images resulting from both 

types of filters were combined and passed through a MaxPooling layer to extract 

salient features. Four such hybrid layers were considered for extracting effective 

features. This novel approach allowed the model to effectively learn multi-scale 

representations, leading to improved performance in breast cancer classification 

tasks. The model was trained and evaluated on a publicly available breast 

histopathology image dataset. 

Results: The proposed WCNN achieved a classification accuracy of 98.4% for 

breast cancer detection, outperforming existing state-of-the-art models. 

Conclusion: The WCNN framework demonstrated the potential of combining 

wavelet and convolutional filters for improved breast cancer detection, offering a 

promising approach for early diagnosis and better patient outcomes. 
Copyright © 2025. This is an open-access article distributed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 International License, which permits 

copy and redistribution of the material in any medium or format or adapt, remix, transform, and build upon the material for any purpose, except for commercial purposes. 

  

INTRODUCTION 

The ongoing process of digitizing pathology aims 

to automatically detect and diagnose numerous 

medical conditions. This process requires continual 

development due to the increasing amount of data 

acquired from patients. Invasive ductal carcinoma is 

the predominant form of breast cancer, accounting for 

80% of all cases in this category. Prompt 

identification and diagnosis of such illness are crucial 

for the patient's life. Several techniques are being 

utilized to acquire breast cancer images, such as 

Magnetic Resonance Imaging (MRI). Ultrasound 

(US), mammography, and histopathological imaging 

techniques. Histopathology images offer a 

comprehensive depiction of tissue structure, enabling 

thorough investigation at the level of the nucleus to 

identify any developing abnormalities. Traditional 

diagnostic methods, such as mammograms and 

biopsies, can be invasive and may not always be 

accurate. Therefore, there is a need for more accurate 

and non-invasive methods for early detection of 

breast cancer. 

Understanding the causes of breast cancer before 

assessing the diagnosis procedure is crucial. Genetic 

disorders associated with family history account for 

10-15% of breast cancer cases. BRCA1 carriers have 

an 80% probability of developing breast cancer 

before 50 or after 80. Both endogenous and 

exogenous hormones affect breast cancer. Lifestyle 

and food consumption matter, especially for heavy 
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drinkers and smokers. (1,2) Exposure to chemicals, 

electromagnetic fields, and ionizing radiation causes 

breast cancer. (3) Breast cancer is also linked to 

underarm cosmetics. Current breast cancer conditions 

affect treatment. Some tumors are smaller but grow 

faster, while others are larger at diagnosis but develop 

slower. Most cancer experts recommend surgery 

initially for patient survival. (4-6) Other therapies 

include chemotherapy, targeted therapy, hormonal 

therapy, and radiation therapy. Invasive ductal 

carcinoma, invasive lobular carcinoma, Paget's 

disease of the nipple, inflammatory breast cancer, 

phyllodes tumors, locally progressed, and metastatic 

breast cancer are all types of breast cancer. 

The potential contributions of this work are 

mentioned in the following points: 

• Novel Deep Learning Architecture: We 

propose a novel deep learning architecture, 

Wavelet-Convolutional Neural Network 

(WCNN), which integrates wavelet filters 

directly into the convolutional layers. This 

innovative approach allows the model to capture 

both frequency and spatial domain features more 

effectively.  

• Enhanced Feature Extraction: By 

incorporating wavelet filters, the WCNN model 

can extract more comprehensive and 

discriminative features from histopathology 

images, leading to improved classification 

performance.  

• State-of-the-Art Performance: Our proposed 

WCNN model achieves state-of-the-art 

performance on a publicly available breast 

histopathology image dataset, demonstrating its 

effectiveness in breast cancer detection.  

• Practical Implications: This research 

contributes to the development of more accurate 

and reliable computer-aided diagnosis systems 

for breast cancer, which can aid in early 

detection and improve patient outcomes. 

 

The novelty, the hypothesis, the dataset and the 

results of this work are described as follows: 

• This work uses wavelet transformation as a 

part of the CNN model instead of using wavelet 

transformation as a pre-processing step like 

other works. 

• The following hypothesis is considered for 

this work: Integrating wavelet filters into the 

convolutional layers of a deep learning model 

will enhance feature extraction from 

histopathology images, leading to improved 

accuracy in breast cancer detection compared to 

traditional CNN models. 

• The improved architecture is used for breast 

cancer detection from a histopathology image 

dataset that is publicly available in Kaggle. 

• The proposed Wavelet-Convolutional Neural 

Network (WCNN) model demonstrated superior 

performance in breast cancer detection 

compared to traditional CNN models. By 

integrating wavelet filters into the convolutional 

layers, the model was able to extract more 

comprehensive and discriminative features from 

histopathology images, leading to improved 

classification accuracy and robustness. 

The rest of the manuscript is structured as 

follows. Section 2 discusses the recent developments 

in breast cancer detection. Section 3 lays out the 

specific procedures followed to build the suggested 

approach; Section 4 is devoted to the outcomes of this 

methodology and comparisons in different formats; 

the method and results are discussed in Section 5. 

Section 6 provides a summary of the entire work and 

an outlook for its future. 

 

Related Works 

In recent decades, numerous works have been 

developed for the automated detection of cancer from 

image inputs, a few of which are discussed in this 

section. 

Small and large mitotic counts in breast 

histopathology images indicate the severity of 

invasive breast cancer and tumor progression. 

Counting little mitosis is difficult for the human eye. 
(7) Some researchers have employed an atrous fully 

connected convolutional network (A-FCN) and a 

multi-scale faster regional convolutional neural 

network. (8) Radial-Based Function Kernel Extreme 

Learning Machine method has been used which 

adjusts parameters using differential evolution. A-

FCN was utilized to generate the bounding box for 

large and small mitosis in breast histopathology 

images, and MS-RCNN was used to detect them. A 

single convolutional neural network (CNN) model 

can extract picture information, but two models create 

and classify bounding boxes, making the process 

complicated. This method's F scores on ICPR-12, 

ICPR-14, and AMIDA-13—0.902, 0.495, and 

0.644—need to be improved for biomedical image 

processing. (9) For multi-class classification, Liu et al. 

presented a collaborative transfer network 

(CTransNet) with a transfer learning backbone that 

could extract and predict from the optimum fused 

features with an accuracy of 98.29%. (10) Deep 

learning-based models like ResNet, DenseNet, VGG-

16, scale-invariant feature transform (SIFT), Global 

Image Structure Tensor (GIST), Histogram of 

oriented gradients (HOG), and local binary pattern 

(LBP) extract features, which are then processed 
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using RCA (refinement, correlation, and adaptation). 

The final classification is done using a Gradient-

boosted decision trees (GBDT) classifier. Despite 

complicated feature selection, classification accuracy 

must be improved. (11) Machine learning model has 

been combined with Principal Component Analysis 

(PCA), Multi-Layer Perceptron (MLP), and Support 

Vector Machine (SVM) to identify breast cancer. 

PCA reduces feature size, and then MLP uses the 

results. The final categorization is done by deleting 

the last MLP layer and connecting MLP to SVM. 

Their transfer learning-based classification of the 

Breast Cancer Coimbra Dataset (BCCD) yielded an 

accuracy of 86.975. This method needs to improve its 

accuracy to compete with deep learning. (12) 

Vijayarajeswari et al.  retrieved mammography 

characteristics using two-dimensional Hough 

transform and classified data using SVM. (13) For 

training, 152 patients were imaged and stained with 

ER, PR, and Ki-67. For validation, 366 samples from 

98 strangers were gathered. VGG-16 CNN model was 

pre-trained with ImageNet. Two skilled pathologists 

confirmed the results. The accuracy of this approach 

(88%) needs to be improved to compete with state-of-

the-art approaches. (14) Wu and Hicks used retrieved 

attributes at different threshold levels to classify 

breast cancer as triple negative or non-triple negative. 

The classification was done using NB, KNN, DT, and 

SVM models. The SVM classifier outperformed other 

ML models in accuracy, sensitivity, and 

specificity.(15) 

A deep learning-based breast cancer detection 

model uses AdaBoost for classification improvement. 

Deep learning uses CNN-based ensemble learning 

and a Sparse Autoencoder (SAE). Some researchers 

verified this method using MRI, ultrasound, and 

mammography images and achieved 97.2% accuracy. 

Mammography has also been used to detect breast 

cancer. (16) Alzubaidi et al. explored the use of transfer 

learning for classifying biopsy images into four 

categories. They experimented with two approaches: 

1) training on a related dataset followed by fine-

tuning on the target dataset, and 2) training on a 

dissimilar dataset followed by fine-tuning. Their 

method demonstrated impressive results, achieving 

an image classification accuracy of 97.4%.(17) Other 

studies employed deep learning with minimal pooling 

modifications to interpret mammography breast 

pictures differently. Cancerous breast tissue was 

segmented using global and region-based pooling. 

Method validation was done using CBIS-DDSM and 

InBreast datasets. The accuracy was 0.93 for the 

InBreast dataset but 0.76 for the CBIS-DDSM 

dataset, which needs to be improved for biomedical 

image processing that concerns life risk.(18) 3-

dimensional CNN architecture has been used in 

automated breast ultrasound (ABUS) for cancer 

detection. The threshold loss is indicated for 

classifying non-cancer and cancer breast pictures. 

The proposed approach was tested on ABUS. In this 

strategy, the authors achieved 95% sensitivity and 

0.61 F1-score. Therefore, biomedical image 

classification with this finding needs more analysis 

and performance improvement.(19) 

A deep CNN model and multi-instance-based 

learning have been used to detect breast cancer in 

histopathology images. The authors divided 

histopathological slide images into patches and 

trained CNN architecture on them, with multi-

instance pooling added to the CNN model. The 

authors tested the model on the BreakHis dataset and 

found 93.06% accuracy, with the accuracy of the 

IUPHL dataset being 96.63%, and that of the UCSB 

dataset being 95.83%. Thus, classification accuracy 

needs to be enhanced with simple design for easy 

implementation. (20) Transfer learning-based residual 

CNN model has been proposed for histopathology 

image analysis by Gour et al. for cancer detection. 

Data augmentation techniques such as stain 

normalization, image patch generation, and affine 

transformation were applied before the deep learning 

model application. This method provided 92.52% 

accuracy that needs to be improved. (21) Some studies 

have proposed CNN for breast histology image 

processing to classify invasive ductal carcinoma from 

healthy breast pictures, classifying lymphoma 

subtypes using the same technique. For example, one 

study used the residual CNN model from FusionNet 

architecture, an autoencoder to verify the model on 

the (22) dataset available for download and achieved 

87.67% IDC detection accuracy, 81.54% F1 score, 

and 97.67% lymphoma classification accuracy. The 

researchers concluded that IDC detection findings for 

early-stage breast cancer diagnosis must be 

improved.(23) 

Classifying Multilayer Perceptron and Light 

GBM classifiers have been used in one study to 

analyze histopathology images for breast cancer 

detection. Multilayer Perceptron model was used for 

feature extraction whereas Light GBM was applied to 

classify the features and that model provided 98.28% 

detection accuracy. (24) Sampath and Srinath proposed 

a new technique, called Hybrid CNN, which 

combined the Sine Cosine Algorithm (SCA) with 

transfer learning (TL). It was proposed that this 

framework leverage TL to pre-train the VGG16 

network on ImageNet, while the final three 

convolutional layers were fine-tuned using TL. SCA 

was employed to optimize hyperparameters. (25) 

Shallu and Sumit proposed a hybrid model using 

Xception as a feature extractor and SVM with RBF 

kernel as the classifier. Different magnification 
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values , i.e., 40X, 100X, 200X, and 400X were also 

applied to observe the variation in performance. In 

that way, authors were able to achieve 96.25% 

accuracy with 40X and 100X magnification, 95.74% 

with 200X and 94.11% with 400X magnification. (26) 

In another work, ten different pre-trained CNNs were 

used for extracting features from breast cancer 

histopathology images. A linear support vector 

machine was employed to develop classification 

models for the various feature sets generated by those 

pre-trained CNNs. The features extracted using 

ResNet50 and the classification using SVM provided 

92.40% accuracy that was the highest among all other 

combinations. (27) In another work, Aldakhil et al. 

used augmentation for class balancing as pre-

processing step prior to classification using a 

modified deep learning model named as ECSAnet. In 

this work, stain normalization was used, achieving 

94.2% accuracy. (28) Transfer learning-based deep 

neural network (DNN) model and XGBoost have 

been combinedly used for cancer detection. The 

method utilized the strengths of deep neural networks 

and XGBoost, but the complexity of the model 

increased due to the considered steps. That model 

provided 93.6% accuracy in detecting cancers from 

histopathology images. (29) Wavelet transformation 

has been used as a pre-processing step prior to 

training by CNN model, with a good accuracy of 

98.08% in breast cancer detection. 

The advantages and disadvantages of discussed 

recent works are summarized in Table 1. 

 

 

Table 1. Advantages and disadvantages of the related works 

Ref. Method Advantages Disadvantages 

[7] 

A-FCN for 

segmentation and 

MS-RCNN for 

classification 

Combination of A-FCN and MS-RCNN 

effectively improves the detection accuracy 

Increased computational complexity due to 

series actions of the steps considered. 

[8] RBF-KELM 

The optimization of RBF-KELM parameters 

using DE can improve the model's 

classification accuracy 

RBF-KELM relies on fixed kernel functions, 

which may limit its ability to capture complex 

patterns in the data. 

[9] CTransNet 
CTransNet architecture effectively combines 

transfer learning and residual learning 

The large-scale DenseNet model used in this 

work can be computationally expensive to 

train and deploy. 

[10] 

ResNet, 

DenseNet, VGG-

16, SIFT, GIST, 

HOG, and LBP 

features and  RCA 

classifier 

The model's ability to handle limited data 

through feature selection helps mitigate the 

overfitting problem 

The feature selection and classification 

processes can be computationally expensive 

[11] 
PCA + MLP + 

SVM  

PCA effectively reduces the dimensionality of 

the data, potentially enhancing model 

performance. 

The combination of PCA, MLP, and SVM can 

increase the complexity of the model, 

[12] 
Hough Transform 

+ SVM 

Hough Transform is a robust technique for 

detecting specific shapes in images, making it 

suitable for identifying circular or elliptical 

masses 

SVM classifiers can be prone to overfitting, 

especially when dealing with large datasets. 

[13]  Pre-trained CNN 

The deep learning-based digital mask 

automates the process of identifying epithelial 

cells. 

The model's performance may be affected by 

staining inconsistencies. 

[14] SVM 

The use of feature selection techniques helps 

identify the most relevant genes for 

classification. 

Use of SVM with large dataset is not a good 

choice. 

[15] 

CNN + LSTM for 

feature 

engineering and 

DLA-EABA for 

classification 

Use of deep learning techniques, such as 

CNNs and LSTM, allows for the extraction of 

complex features from medical images. 

Increased computational complexity due to 

series actions of the steps considered. 
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[16] Hybrid CNN Improved features 
Increased computational complexity due to 

series actions of the steps considered.  

[17] 
CNN with special 

pooling structures 

Reduced annotation effort, End-to-End 

learning by using deep learning model. 

Mammograms can be affected by noise and 

artifacts. 

[18] ABUS 
Provides 3D views of the whole breast, Low 

false positives. 

It is a time-consuming image review process. 

Also there is a potential for errors by oversight 

during review. 

[19] CNN 
The MIL-based approach effectively handles 

the large size of WSI images. 

The quality of the extracted patches can 

significantly impact the model's performance. 

[20] 
Residual 

Learning CNN 

Application of data augmentation techniques 

helps to improve the model's generalization 

ability and reduces overfitting. 

Stain normalization, image patch generation, 

and affine transformation increase 

methodological complexity. 

[21] 
CNN + 

Autoencoder 

It effectively combines the strengths of 

convolutional neural networks and 

autoencoders 

Increased computational complexity due to 

series actions of the steps considered. 

[23] 
MLP + 

LightGBM 
Improved features 

Increased computational complexity due to 

series actions of the steps considered. 

[24] SCA + CNN Improved features 
Increased computational complexity due to 

series actions of the steps considered. 

[25] Xception + SVM 
Improved features and analyzing the effect of 

magnification of images 

Increased computational complexity due to 

series actions of the steps considered. 

[26] 
ResNet 50 + 

SVM 

Improved features. Analysing the 

performance of SVM trained with Deep 

features  

Increased computational complexity due to 

series actions of the steps considered. 

[27] 

Data 

Augmentation + 

Stain 

Normalization + 

ECSAnet 

Class imbalance is addressed and stain 

normalization is done 

Increased computational complexity due to 

series actions of the steps considered. 

[28] 

Transfer 

Learning-based 

DNN features + 

XGBoost 

classifier 

Combines the strengths of deep neural 

networks and XGBoost 

Increased computational complexity due to 

series actions of the steps considered. 

[29] 

(EWT+DWT) 

features + CNN 

classifier  

Good feature engineering is done 
Increased computational complexity due to 

series actions of the steps considered. 

 

From the above study, it is clear that 

convolutional neural networks are utilised for 

extracting only the spatial features. Wavelet 

transformation has been used as pre-processing steps; 

however, its application along with convolutional 

layer is not yet tested. This work focuses on designing 

a novel deep learning model by integrating 

convolutional layers with wavelet filters in a single 

model, not one after another, but in parallel.  

 

METHODS 

Proposed Model 
The proposed   method   includes   both   wavelet 

features and convolutional features in the same 

WCNN model. The workflow diagram of the 

proposed method is shown in Figure 1.  

The suggested method is uniquely designed to 

enhance the task of cancer detection. In most of the 

work, it is observed that wavelet features are 

extracted once prior to training by any deep learning-

based model. In this work, the effectiveness of 

wavelet features is enhanced in the CNN model itself 

by applying wavelet transform along with each 

convolutional layer followed by a MaxPooling layer. 

Each part of the proposed method is described in the 

next subsections. 
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Dataset Description 

The validity of the proposed model is confirmed 

by utilizing breast histopathology (30) images that 

include both NonIDC and IDC images. The initial 

collection comprises 162 whole-mount slide 

photographs that were scanned at a magnification of 

40x. The IDC and Non-IDC patches are recovered 

from the images with a size of 50x50. These patches 

are labelled with the patient ID, the coordinates of the 

pixels from which the patches are cropped in the x 

and y directions, and the appropriate class. The class 

value 0 corresponds to NonIDC, while the class value 

1 corresponds to IDC. Once the dataset was gathered, 

we proceeded to rename the dataset photos using 

straightforward labels. For instance, we used 

"NonIDC" to denote healthy breast histopathology 

images and "IDC" to indicate images that include 

cancer cells. 

 
Figure 1. Flow chart of the proposed method 

 

Figure 2 displays a representative selection from 

each category of images. One can distinguish 

between a healthy breast tissue and a breast tissue 

with cancer cells by carefully examining 

histopathological images and inspecting the ductal 

cells. In the case of IDC, the presence of anomalous 

proliferations is observed within the lactiferous duct, 

with the potential for local tissue infiltration. In 

healthy breast conditions, the milk ducts are devoid 

of any anomalous growths. The growths can manifest 

as tubules, nuclear pleomorphism, or a high mitotic 

count, but visually identifying them manually is a 

time-consuming process. Hence, employing deep 

learning algorithms is the optimal decision for 

automated and expedited analysis. 

 
Preprocessing 

Converting  breast  histopathology  images  from  

 
Figure 2. The breast histopathology image dataset, 

including several samples 
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their native RGB (Red, Green, Blue) color scheme to 

grayscale is typically the first step in the process of 

preparing these images for further analysis. This 

transformation is essential for a number of different 

reasons. Initially, grayscale images minimize the 

dimensionality of the data, which simplifies later 

processing chores and has the potential to improve 

computational efficiency. Second, grayscale images 

avoid the possibility of color biases or artifacts that 

could be caused by variances in lighting 

circumstances or staining processes.  In grayscale 

photographs, the emphasis is placed on intensity 

values rather than color information, which allows for 

the underlying structural characteristics of the tissue 

to be brought to the forefront. These characteristics 

include cellular morphology and architectural 

patterns.  

This simplification has the potential to improve 

the capability of machine learning algorithms to 

accurately classify or segment various sections of the 

breast tissue. A preparatory step that must be 

completed before performing 2D wavelet 

transformation is the conversion to grayscale. This 

integrated technique has the potential to produce a 

multitude of traits that can be utilized for a variety of 

tasks, including the classification of breast cancer. 

 

Wavelet Transform 

Using a mathematical technique known as the 

wavelet transform, an image can be broken down into 

a collection of basic functions that are referred to as 

wavelets. Due to the fact that these wavelets are 

localized in both time (or space) and frequency, they 

are ideally suited for the analysis of signals that have 

transitory characteristics.31 

The 2D wavelet transform's translated and scaled 

basis elements were provided earlier. The 

multiresolution representation of the scaling 

functions, (𝑥, 𝑦) and wavelet function 𝜓𝑖(𝑥, 𝑦) for 

the 2D is given below. The two-dimensional wavelets 

are used in image modification. 


𝑗,𝑚,𝑛

(𝑥, 𝑦) = 2𝑗/2(2𝑗𝑥 − 𝑚, 2𝑗𝑦 − 𝑛)  

(𝜓𝑗,𝑚,𝑛
𝑖 (𝑥, 𝑦) = 2𝑗/2𝜓𝑖(2𝑗𝑥 − 𝑚, 2𝑗𝑦 − 𝑛)  

Where 𝑖 = {H, V, D} and H, V, D refer to the 

horizontal, vertical and diagonal directions. 𝑗 ≥ 𝑗0, 
where 𝑗0 is an arbitrary starting scale, 𝑥 and 𝑦 are the 

spatial coordinates of the image pixels, and 𝑚 and 𝑛 

are the indices that determine the scale and position 

of the wavelet basis functions. 

An important benefit of wavelet transform is its 

capacity to extract characteristics on various scales. 

This is accomplished by employing wavelets of 

varying sizes and orientations. Approximation 

coefficients scale low frequency components with no 

change in orientation and extracts overall image 

structure. The approximation function of the wavelet 

representation is given as  

𝑊(𝑗𝑜, 𝑚, 𝑛) =
1

√𝑀𝑁
∑ ∑ 𝑓(𝑥, 𝑦)

𝑗𝑜,𝑚,𝑛
(𝑥, 𝑦)

𝑁−1

𝑦=0

𝑀−1

𝑥=0

 

Where 𝑀 and 𝑁 represents the dimension of the 

image. Horizontal coefficients scale higher frequency 

components with horizontal orientation and extracts 

horizontal edges and textures. The horizontal sub-

band is represented as  

𝑊𝜓
𝐻(𝑗, 𝑚, 𝑛) =

1

√𝑀𝑁
∑ ∑ 𝑓(𝑥, 𝑦)𝜓𝑗,𝑚,𝑛

𝐻 (𝑥, 𝑦)

𝑁−1

𝑦=0

𝑀−1

𝑥=0

 

Vertical coefficients scale higher frequency 

components with vertical orientation and extract 

vertical edges and textures. The vertical sub-band is 

represented as  

𝑊𝜓
𝑉(𝑗, 𝑚, 𝑛) =

1

√𝑀𝑁
∑ ∑ 𝑓(𝑥, 𝑦)𝜓𝑗,𝑚,𝑛

𝑉 (𝑥, 𝑦)

𝑁−1

𝑦=0

𝑀−1

𝑥=0

 

Diagonal coefficients scale higher frequency 

components with diagonal orientation and extract 

diagonal edges and textures. The diagonal sub-band 

is represented as  

𝑊𝜓
𝐷(𝑗, 𝑚, 𝑛) =

1

√𝑀𝑁
∑ ∑ 𝑓(𝑥, 𝑦)𝜓𝑗,𝑚,𝑛

𝐷 (𝑥, 𝑦)

𝑁−1

𝑦=0

𝑀−1

𝑥=0

 

The above expressions are utilized to extract wavelet 

features. Samples of such wavelet coefficients are 

shown in the results section.  

 

Convolutional and MaxPooling Layer 

Convolutional layers utilize filters to process the 

input image, extracting distinct features at various 

positions. These filters have the capability to identify 

edges, corners, textures, and various other patterns. 

Convolutional layers achieve weight sharing across 

spatial dimensions, resulting in parameter reduction 

and improved model efficiency. Convolutional layers 

exhibit spatial invariance, rendering them well-suited 

for tasks such as object recognition and detection. In 

this work, four convolutional layers are taken with 

256, 128, 64 and 32 neurons, respectively. 

The processing of input data (x) in a convolutional 

neural network is as follows: 
𝑦 = 𝑓(𝑥) = 𝜎(𝑊 ∗ 𝑥 + 𝑏) 

The symbol σ denotes the activation function, 𝑊 

represents the weights, and b indicates the bias used 

in the training process. In our work, we employ the 

Rectified Linear Unit (ReLU) activation function for 

the convolution layers. The error evaluation is 

conducted with binary cross-entropy (BCE), which is 

expressed mathematically as: 
𝐵𝐶𝐸(𝑦𝑟𝑒𝑎𝑙 , 𝑦𝑝𝑟𝑒𝑑) = − ∑ 𝑦𝑟𝑒𝑎𝑙 log 𝑦𝑝𝑟𝑒𝑑

2
𝐼=1    
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Where, 𝑦𝑟𝑒𝑎𝑙 and 𝑦𝑝𝑟𝑒𝑑 represent the actual or real 

label of the data and predicted labels respectively. 

MaxPooling layers decrease the spatial 

dimensions of the feature maps, enhancing the 

computational efficiency of the model. This layer 

identifies and prioritizes the most significant features 

within a specific area, hence directing the model's 

attention to the most relevant information. In this 

work, MaxPooling is used after convolutional layer, 

but it is somehow different from regular CNN 

models. The details of this improved technique are 

presented in the next subsection. 

 

Wavelet-Convolutional Neural Network (WCNN) 

In this work, a unique architecture is created by 

implementing wavelet transformation in every 

convolutional layer. In Fig.3, the addition sign 

denotes a cross-product operation of images from two 

different sets. Each image of a convolutional layer is 

added to each image of wavelet features set. The 

aggregated characteristics are next sent into a 

MaxPooling layer to extract valuable features, as 

described in the preceding subsection. This phase is 

repeated four times in a sequential way in the 

proposed model. A flatten layer followed by two 

dense layers is taken at the last stage of the WCNN 

model. The last dense layer has two neurons activated 

with SoftMax activation function for the final 

classification of images as either IDC or Non-IDC.  

The structural parameters of the proposed WCNN 

model are given in Table 2. 

While there is no strict mathematical formula to 

determine the optimal number of neurons in a CNN 

layer, values that are the powers of 2 are chosen as it 

is a common practice. However, the number of layers 

is determined by looking into the size of input images, 

i.e., 50x50 in this work.  

 

 
Figure 3. Architecture of the proposed WCNN model 

 
Table 2. Parameters of the Proposed WCNN Architecture 

Layer (type)                  Output Shape              

Conv2D (None, 50, 50, 256)         

Wavelet2D (None, 50, 50, 4)         

MaxPooling2D (None, 25, 25, 1024)         

Conv2D         (None, 25, 25, 128)         

Wavelet2D (None, 25, 25, 4)         

MaxPooling2 (None, 12, 12, 512)         

Conv2D         (None, 12, 12, 64)         

Wavelet2D (None, 12, 12, 4)         

MaxPooling2 (None, 6, 6, 256)         

Conv2D         (None, 6, 6, 32)         

Wavelet2D (None, 6, 6, 4)         

MaxPooling2 (None, 3,3, 512)         

Flatten            (None, 1152)               

Dense               (None, 100)                  

Dense               (None, 2)                  

RESULTS 

System Specification 

Python version 3.7 was used in the Google 

Colaboratory platform with an online GPU on a 

computer equipped with an Intel Core i3 processor 

and 8 gigabytes of random access memory (RAM) to 

test the applicability of the suggested model. Through 

the utilization of an 80:20 ratio, the dataset was 

partitioned into the training set and the validation set 

Wavelet Features 

2D wavelet transform is applied on the 

preprocessed grayscale images. A sample of the 

resulting images is given in Figure 4. 

Just like convolutional features, four different 

features are generated by applying wavelet transform 

on each image. These images are later added with 

convolutional features to pass through the 

MaxPooling layer. 
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Approximation Horizontal Detail Vertical Details Diagonal Detail 

Figure 4. Wavelet features with for a sample image 

 

Model Evaluation 

At the initial stage, a simple CNN model is 

trained directly with histopathology dataset images 

for performance verification. The classification 

accuracy obtained in that case was 91.06% that was 

not up to the satisfaction level. Performance was 

again checked by training the same CNN model with 

wavelet features. In this case, wavelet transformation 

was used as a preprocessing step. The classification 

results increased and obtained a classification 

accuracy of 94.31%. This increase in performance 

motivated the integration of wavelet features as the 

part of CNN model, leading to the development of the 

proposed WCNN model. The WCNN model provided 

classification accuracy of 98.39% that represents 

improved and highly accurate cancer detection. The 

performance of all the considered models is shown in 

Figure 5. 

 
Figure 5. Classification accuracy comparison of the 

considered models 

 

In Figure 4, Wavelet + CNN represent the method 

where wavelet transformation is used as a 

preprocessing step and the extracted coefficients are 

used to train CNN. The predictions done by the 

proposed model on the test set with 2000 images is 

shown in terms of the confusion matrix in Figure 6. 

The observed values are the true values whereas 

the predicted labels are the predictions made by the 

proposed model. The confusion matrix shows that the 

model predicted 990 numbers of images as IDC and 

978 images as Non-IDC that are the correct 

predictions. 

 

 
Figure 6. Confusion matrix obtained using test set 

 

The number of wrong predictions is there, but this 

count is very low and does not represent the 

effectiveness of the proposed model. Classification 

accuracy comparison with state-of-the-art model is 

given in Table. 3. The accuracy, F1 score, precision, 

recall, sensitivity, and specificity are calculated from the 

confusion matrices for the proposed model using 

equations (9-14).  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 ×  100  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
× 100  

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100   

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑅𝑒𝑐𝑎𝑙𝑙 ×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
    

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
    

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
    

 

DISCUSSION  

The study introduces a novel Wavelet-

Convolutional Neural Network (WCNN) architecture 

for breast cancer detection. By integrating wavelet 

and convolutional filters, the WCNN effectively 

extracts both frequency and spatial domain features, 

leading to superior classification accuracy compared 
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to existing methods. The wavelet component enables 

multi-scale analysis, capturing both fine-grained 

details and coarser structures, while the convolutional 

layers focus on local patterns. This combined 

approach enhances feature representation and 

improves the model's ability to detect subtle patterns 

and textures.  

 
 

Table 3. Performance comparison with state-of-the-art methods 

Work Accuracy(%) 
F1-

Score 
Recall Precision Sensitivity Specificity 

[7] - 0.902 0.893 0.912 - - 

[8] 91.13 0.9283 - - 91.01 91.34 

[9] 98.29 - - - - - 

[10] 93.3 - - - - - 

[11] 86.97 - - - - - 

[12] 94      

[13] 88 - - - 0.82 0.88 

[14] 86 0.53 0.75 0.41 - 0.81 

[15] 97.2 - - - 0.983 0.965 

[16] 96.1 - - - - - 

[17] 92.2 - - - - - 

[18] - 0.61 - 0.50 0.95 - 

[19] 96.63 0.9528 0.9609   0.9584 

[20] 92.52 93.45 - - - - 

[21] 89.57 0.8154  0.7945 0.8375 0.9177 

[23] 98.28 - - - - - 

[24] 96.9 - - - - - 

[25] 96.25 0.96 0.96 0.96 - - 

[26] 92.40 0.8588 0.8644 0.8547 - - 

[27] 94.2 94 - 95 94 98.23 

[28] 93.6 - - - - - 

[29] 98.08 0.978 0.9920 0.9841 0.9920 0.9355 

Proposed model 98.4 0.98 0.9950 0.985 0.9782 0.9898 

 

While adding the Wavelet transformation along 

with convolutional layer, it adds more complexity in 

comparison to traditional CNN models. The proposed 

model took more time for training in comparison to 

the model without wavelet as a part of it, but the test 

samples were evaluated within fractions of a second. 

The proposed deep learning model, incorporating 

parallel wavelet and convolutional layers, presents a 

complex architecture that demands significant 

computational resources. The parallel processing of 

wavelet and convolutional features, while enhancing 

feature extraction, increases the model's parameter 

count and computational complexity. Consequently, 

training and inference times are expected to be higher 

compared to simpler architectures. However, the 

potential for improved feature representation and 

classification accuracy may justify the increased 

computational cost, especially when dealing with the 

intricate patterns present in the HAM10000 dataset. 

The model's reliance on a public dataset with 

potential limitations and the lack of clinical validation 

necessitate further research to ensure its practical 

applicability in clinical settings. Additionally, 

improving the model's interpretability would enhance 

its clinical acceptance and trust. The real-time 

implementation will enhance the model's robustness 

through ongoing training and continual performance 

updates. 

 

CONCLUSION 

This study showed that CNNs and wavelet 

processing work well together to detect breast cancer 

in histopathology images. The suggested model 

combined the strengths of the two methods, using 

wavelet transform for multi-scale feature extraction 

and CNNs for robust learning. By using wavelet 

transform, the model was able to improve its class 

discrimination by capturing both global and local data 

in the input images. In contrast, the model was able to 

autonomously extract pertinent features for the 

classification job since the convolutional layers learnt 

hierarchical data representations. By surpassing both 

conventional and alternative deep learning 

architectures, the suggested model attained a 

remarkable 98.4 % classification accuracy. This 

finding demonstrates the promise of wavelet 

transform with CNNs for various image analysis 

tasks. Future work on expanding the method's 

applicability may involve exploring fusion with other 

modalities. In addition, we intend to create a system 

that can analyze histopathology pictures and other 

data to determine the cancer stage. 
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