Breast cancer is the most frequently occurring cause of cancer-related mortality in women all around the world. However, the risk of cardiovascular diseases increases in parallel with dramatic improvements in target-specific treatment for breast cancer. The aim of this review was to show the importance of cardiovascular involvement in patients with breast cancer.

Methods: Published literature, regarding breast cancer and cardiovascular involvements, as well as cardiovascular complications of current treatments for breast cancer, including chemotherapy and radiotherapy, was reviewed.

Results: Review of our data revealed that there are extensive direct and indirect impacts of breast cancer on the cardiovascular system. Cardiovascular complications of breast cancer are common and range from cardiomyopathy, pericardial involvement, venous thromboembolism, and arterial thrombosis to some uncommon problems.

Conclusion: Early detection of cardiovascular damages from breast cancer is strongly recommended. Considering the significant cardiovascular complications of breast cancer and its treatment, early recognition, prevention, and management of these complications, even the minor ones, improve prognosis and survival of patients with breast cancer.
of breast cancer irrespective of chemotherapy or radiotherapy. In the second section, we will talk about cardiovascular complications of radiotherapy or chemotherapy in patients treated for breast cancer.

Methods
A literature search was performed for the years 1989 through 2017. We searched PubMed, Elsevier, MEDLINE, and Google Scholar. We considered scientific publications relevant to breast cancer for inclusion in our work.

First of all, we searched with “breast cancer,” and again with the “breast cancer and cardiovascular.” Then we select some of the articles obtained from the first search strategy, but most of them were related to the second search strategy.

Published literature regarding breast cancer and cardiovascular involvements, as well as cardiovascular complications of the current treatments for breast cancer, including chemotherapy and radiotherapy, were reviewed.

We used review articles (n = 22), cohort studies (n = 5), cross-sectional studies (n = 27), population-based case-control studies (n = 1), case reports (n = 6), guidelines (n = 2), case-control studies (n = 2), experimental studies (n = 3), and RCTs (n = 5).

Papers without full text, presented at conferences, or published in languages other than English were excluded.

Results
Cardiovascular complications of metastatic breast cancer
Cardiovascular complications of breast cancer included metastasis to the heart, superior vena cava syndrome, pericardial involvement, vascular problems, and cardiac function deterioration in a background of paraneoplastic syndrome.

Cardiac metastases
Cardiac metastases are detected in 6–20% of autopsies of patients with malignant neoplasms such as lung cancer, mediastinal tumors, breast cancer, melanoma, and esophageal cancer. Although intracavitary growth of secondary heart tumors is rare, the important point is that symptomatic heart metastasis can occur even many years after diagnosis. According to Bussani et al., cardiac metastasis (more commonly pericardial metastasis, and rarely direct myocardial and endocardial metastasis) could be as high as 15.5% in patients with breast cancer.

From pathophysiological viewpoint, multiple mechanisms have been proposed for breast cancers that are able to induce heart metastasis. For instance, breast-tumor cells in brain and heart metastases express high levels of endoglin, a cell-surface disulfide-linked homodimeric glycoprotein which binds to integrins and is a co-receptor for TGF-β. These ligands and mediators participate in heart metastasis. Two-dimensional transthoracic and transesophageal echocardiography are easy, quick, and sensitive techniques for detection of cardiac metastasis. Computed tomography (CT) scan, magnetic resonance imaging (MRI), positron emission tomography with 2-[fluorine-18]-fluoro-2-deoxy-D-glucose integrated with computed tomography (18F-FDG PET/CT), and PET-MRI as confirming methods could be helpful when there is any suspicion as to excluding cardiac involvement during clinical follow-up of these patients.

Superior vena cava syndrome (SVCS)
Approximately 87% to 97% of SVCS cases are caused by primary intrathoracic malignancies. Breast cancer is one of the solid tumors causing SVCS, but not as much as other tumors like non-Hodgkin lymphoma, lung, or testicular cancer. The most common nonmalignant cause of SVCS in cancer patients is thrombosis associated with venous access devices, especially patients with breast cancer who have long term central venous port catheter. There are some noninvasive therapeutic measures for SVCS, but endovascular revascularization of complete occlusion of the SVC is considered the therapy of choice.

Pericardial involvement
Breast cancer could cause significant pericardial effusion or tamponade. This kind of pericardial involvements impairs quality of life. Recurrent pericardial effusion along with the development of dyspnea or tachycardia may necessitate repetitive hospitalization. Percutaneous pericardiocentesis with extended catheter drainage can be safely and effectively implemented as the primary treatment for pericardial effusion in cancer patients, including in those with thrombocytopenia.

Venous thromboembolism (VTE)
Cancer patients constitute about 20% of all cases of VTE, and are also 4- to 7-fold more likely to develop VTE compared with patients without cancer. Patients with cancer often show abnormalities in each component of Virchow’s triad, leading to hypercoagulability. Breast cancer is not a common cause of primary VTE per se, but patients with multiple metastasis or immobile ones, or who are under hormone therapy with tamoxifen or aromatase inhibitors, have higher risk for VTE and should receive VTE prophylaxis.

Arterial thrombosis
Arterial thrombosis and its resultant clinical syndromes, such as cerebrovascular events or peripheral ischemia, could happen in cancer patients, and the most common reported malignancy in this setting is metastatic breast cancer.
Thrombosis may be related to cancer itself or its treatment. The paraneoplastic process leads to hypercoagulability with changes in levels of factor VII and proteins C and S. Tissue factor and cancer procoagulant levels may rise. Thrombocytosis, increased fibrinogen levels and reduced fibrinolysis, endothelial damage, and stasis may also contribute to thrombosis. Premenopausal breast cancer patients who receive both chemotherapy and tamoxifen are more likely to present with arterial thrombosis compared with those who receive chemotherapy alone.26,27

Heart failure (HF) or cardiac function deterioration also occurs in a background of paraneoplastic syndrome of breast cancer.28

Complications of therapy for breast cancer
Here we explain more about anti-human epidermal growth factor receptor 2 (HER2) agents, especially trastuzumab.

Novel chemotherapy agents and related cardiac toxicity
The overexpression of HER2 in breast cancer is associated with more aggressive disease with a poor prognosis.19,30 Trastuzumab, pertuzumab, and other anti-HER2 agents are monoclonal antibodies against the extracellular domain of HER2 that have been shown to be effective in metastatic breast cancer as monotherapy or combining with other chemotherapy agents.31,32 These agents have proved to be effective in both metastatic and early-stage breast cancers when combined with chemotherapy, and reduce relapse rates by 50% irrespective of age and other relevant prognostic factors.33,34

As mentioned by the American Society of Clinical Oncology, in contrast to anthracycline-related cardiac toxicity (type 2/irreversible), trastuzumab does not result in myocardial loss. In trastuzumab-induced cardiac dysfunction, myocytes appear normal histologically and alterations may be noticed only by using electron microscopy.35

In a study by Swain et al., the addition of pertuzumab to trastuzumab and docetaxel in patients with HER2-positive metastatic breast cancer significantly increased the median overall survival to 56.5 months—an improvement of 15.7 months over survival in the control group.36,37

As mentioned before, these novel biologic therapies improve disease-free and overall survival, but increase the risk of cardiotoxicity,38,39 as has been shown in many studies.40 The cardiotoxicity of these agents could involve any part of the heart’s structure, and the ongoing studies are assessing these damages to heart using various methods and parameters.

Recently, we compared cardiomyopathy-related findings before and after trastuzumab therapy in patients with breast cancer and found that diastolic function was significantly impaired after treatment (25.9% versus 43.6%).37 After the therapy, left ventricular ejection fraction (LVEF) was reduced significantly, and troponin levels were increased remarkably (0% versus 6.7%); however, no significant differences were observed for CRP and NT-pro-BNP levels. This study showed the importance of troponin for trastuzumab-induced cardiomyopathy.

In a study by Rossner and colleagues38 in 28 female patients with metastatic HER2-positive breast cancer, blood samples were drawn before and 30 min after intravenous trastuzumab infusion, and EF and NT-pro-BNP levels before and after the initiation of trastuzumab were compared. According to higher median 3-month mortality in cases with elevated levels of NT-pro-BNP, this marker could be considered as a prognostic factor in these patients.

In one study by Cardinale et al., the incidence rate of trastuzumab-induced cardiotoxicity (TIC) in breast cancer patients was reported to be 17%, and TIC was significantly associated with elevated levels of troponin I (TNI) (62% in TNI+ vs 5%; P < .001). They suggested that increased TNI levels can identify trastuzumab-treated patients who are at risk for cardiotoxicity and who are unlikely to recover from cardiac dysfunction despite HF therapy.

In another study by Goel et al., serum troponin I and NT-pro-BNP were assayed immediately before and 24 hours after trastuzumab infusion in patients with breast cancer. A significant proportion of the patients with normal LVEF who received trastuzumab experienced elevated levels of NT-pro-BNP, but that was not the case for troponin I levels.40

Lamot et al. reported evaluated trastuzumab treatment-induced cardiac toxicity in 30 breast cancer patients.41 Cardiac toxicity was assessed based on LV function. LVEF showed a significant decrease after trastuzumab adjuvant therapy.

In a large cohort study by Chavez-MacGregor et al., 2203 older breast cancer patients under trastuzumab therapy were evaluated. They observed a chronic heart failure rate of 29.4% among trastuzumab users, compared with 18.9% in non-trastuzumab users (P < 0.001).

In addition to ejection fraction (EF) and cardiac biomarkers, a few studies have also shown adverse effect of this drug on left atrium. A recently published observational study revealed changes in atrial diameter and geometry during the early periods of trastuzumab treatment.42 Ongoing studies are evaluating precisely the effect of these monoclonal antibodies on atrial structure and function.

Finally, regarding the research on cardiotoxicity of trastuzumab, most recent and valuable studies some of which have been mentioned above, have demonstrated the adverse effect of newer biologic therapies on heart system, but their cardiotoxicity is significantly lower than the older agents such as...
anthracyclines.

Contemporary radiotherapy and related cardiac toxicity

Like chemotherapy, radiation causes mainly a series of toxic effects and hemodynamic and structural damages to the cardiovascular system, affecting the long-term survival. Radiation to the chest can damage the pericardium, myocardium, heart valves, and coronary vessels. According to available evidence, the damage to the cardiovascular system is directly related to the dose of radiation and the volume of heart irradiated, especially if combined with chemotherapy. The extent of damage will be doubled in patients with preexisting cardiac diseases. In radiation-induced vascular damage, endothelial dysfunction is the first sign. After starting radiation therapy, large myocardial perfusion defects were detected in single-photon emission computed tomography scans (even in 55% of asymptomatic patients), and radiotherapy has even been accompanied by HF in these patients; overall, however, HF is not common in patients undergoing radiation therapy and is usually a late effect of radiation therapy. The mechanism responsible for radiation-induced injury to heart could be myocardial fibrosis resulting from collagen disruption. Radiation can cause injury to the intima of the coronary arteries and initiate a cascade of atherosclerotic events. The left anterior descending and the right coronary arteries are most often involved in patients undergoing mediastinal radiation for Hodgkin’s disease.

Progressive fibrosis following radiation-induced myocardial collagen synthesis results in valvular heart disease by increasing the valvular thickness, and in left ventricular dysfunction by increasing ventricular wall thickness. Ongoing studies are evaluating radiotherapy-induced LV dysfunction by new imaging methods and parameters like (18F-FDG PET/CT) and PET-MRI, as mentioned.

In spite of all the mentioned complications, the absolute risk of radiation therapy is small and seems to be cancelled out by the advantages for patients receiving radiation therapy.

Discussion

Approach to cardiac toxicity of chemotherapeutic agents in patients with breast cancer

Risk factors of trastuzumab-induced cardiomyopathy

Epidemiologic evidence indicates that, even without a clear LVEF at the time of treatment, early treatment of breast cancer with trastuzumab presents a substantial long-term risk of HF, especially for women older than 65 years.

Diagnosis of trastuzumab-induced cardiomyopathy

Echocardiographic evolution of EF using Simpson’s method is recommended for assessment of left ventricular function. Abnormalities of right ventricular contractility, ventricular dilation, and abnormal left ventricular contractility are the earliest presentations of myocardial damage diagnosed by echocardiography.

Strain rate imaging (SRI) is a new echocardiographic modality that enables accurate measurement of regional myocardial function and is recommended especially for chemotherapy- and radiotherapy-induced cardiotoxicity in breast cancer patients.

There are some recommendations by experts and in reported articles from tertiary centers, and almost all of them agree that treatment with trastuzumab must be stopped if clinical symptoms of HF are present. In the event of an asymptomatic decrease in LVEF by 15% or more, discontinuation of trastuzumab therapy is mandatory. Patients receiving chemotherapy may be considered to be at elevated risk of developing cardiac dysfunction —Stage A heart failure in ACC/AHA guidelines. Baseline cardiac evaluation through history taking, physical examination, and electrocardiography should be done for all patients before they are given trastuzumab. Five main randomized trials have demonstrated the survival advantages of adjuvant trastuzumab in early breast cancer patients. Recently, guidelines were developed for cardiac monitoring of metastatic breast cancers receiving trastuzumab treatment. Since trastuzumab-associated cardiac toxicity is a great concern in making all the adjuvant trials, strict cardiac evaluation is necessary in these trials prior designing and monitoring at regular intervals during therapy. In National Surgical Adjuvant Breast and Bowel Project (NSABP) B-31, trastuzumab-induced symptoms were monitored and patients who developed clinically significant cardiac symptoms while receiving anthracycline treatment were excluded from subsequent trastuzumab therapy. The initiation or continuation of trastuzumab treatment in asymptomatic patients required an LVEF equal to or exceeding the lower limit of normal range. In North Central Cancer Treatment Group (NCCTG) N9831, pooled with NSABP B-31, 6.7% of the enrolled patients were not allowed to start trastuzumab treatment because their LVEF had declined to a subnormal level or had been decreased by ≥ 16% from baseline after completion of anthracycline treatment. Jones et al., published cardiology assessment and monitoring methods in British Journal of Cancer, and Saad et al. presented the second recommendations and their related demonstrations.

The newest accepted guidelines are developed by the American Society of Echocardiography and the European Association of Cardiovascular Imaging.
Baseline evaluation of LVEF by 2D or 3D echocardiography, global longitudinal strain (GLS), and troponin I should be determined at the initiation of any regimen potentially associated with type I toxicity.

At the initiation of trastuzumab, baseline evaluation of LVEF should be done by 2D or 3D echocardiography, GLS, and troponin I assessment. If LVEF is less than 53%, GLS is near the lower limit of normal, and troponin test is positive, cardiology consultation should be recommended, and if these three parameters are in normal range, follow-up by measurement of LVEF, GLS, and troponin every 3 months is recommended.

At the initiation of trastuzumab after a regimen associated with type I toxicity, such as anthracycline (cell apoptosis and irreversible cell damage) the assessment is similar to above guidelines. Follow-up by measurement of LVEF, GLS, and troponin every 3 months during therapy, and 6 months after therapy, is recommended. As in trastuzumab monitoring, if parameters are abnormal, cardiology consultation would be necessary; and if parameters are within normal range, follow-up at the completion of therapy and 6 months later should be considered. For early detection of subclinical LV dysfunction GLS is the optimal parameter: a relative percentage reduction of < 8% from baseline is not significant, but those >15% are probably abnormal.

Today, cardiovascular magnetic resonance (CMR) imaging is widely used in patients with breast cancer for detecting both the acute and chronic complications of cardiotoxic chemotherapy agents. CMR is recommended when the quality of the echocardiogram is suboptimal. With the introduction of late gadolinium enhancement (LGE), CMR is considered the gold standard for myocardial viability imaging accompanied by positron emission tomography.

Aerobic training (AT) is a non-pharmacological strategy to attenuate or even counteract acute and chronic cardiovascular abnormalities in the context of early breast cancer. It can improve systolic and diastolic function and reduce pathologic cardiac remodeling. This may lead to enhanced exercise tolerance and resistance to fatigue during exertion in patients with known cardiovascular disease. Cardioprotective properties of AT in the context of early breast cancer has been well explained in an important study by Scott et al. They proposed an exercise paradigm based on the principles of AT to facilitate a personalized medicine approach that may optimize prevention or attenuation of breast cancer therapy-associated cardiovascular disease.

Echocardiography can be utilized as a routine method for monitoring cardiac side effects. It helps in assessment of parameters for systolic and diastolic function and anatomical cardiac dimensions as well.

The remarkable improvements in screening and adjuvant therapy for breast cancer, combined with close surveillance of cancer survivors, have led to a significant decrease in recurrence rate. Currently, cardiovascular disease is one of the leading causes of death in many patients who have been treated for breast cancer.

We recommend screening and surveillance for early detection of subclinical cardiovascular complications of breast cancer itself, or cardiotoxicity associated with its treatment. Early detection and treatment of even the smallest cardiac damages will improve prognosis and life expectancy of patients with breast cancer.

Conflict of Interest

None to declare.

References

2893-917.

57. Fox K. The evaluation of left ventricular function for patients being considered for, or receiving Trastuzumab (Herceptin) therapy. British journal of cancer. 2006;95(10):1454.

